Skip to main content
Log in

Nitration as a Mechanism of Na+, K+-ATPase Modification During Hypoxia in the Cerebral Cortex of the Guinea Pig Fetus

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Garthwaite, J., Charles, S. L., and Chess-Williams, R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 336:385–387.

    Google Scholar 

  2. Vincent, S. R. 1994. Nitric oxide: a radical neurotransmitter in the central nervous system. Progr. Neurobiol. 42:129–160.

    Google Scholar 

  3. Knowles, R. G. and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J. 298:249–258.

    Google Scholar 

  4. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D., and Schwartz, J. P. 1993. Synthesis of nitric oxide in CNS glial cells. Trends. Neurosci. 16:323–328.

    Google Scholar 

  5. Murphy, S. and Guzybicki, D. 1996. Glial NO. Normal and pathological roles. Neuroscientist 2:90–99.

    Google Scholar 

  6. Nomura, Y. and Kitamura, Y. 1993. Inducible nitric oxide synthase in glial cells. Neurosci. Res. 18:103–107.

    Google Scholar 

  7. Agullo, L. and Garcia, A. 1992. Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture. Biochem. Biophys. Res. Commun. 182:1362–1368.

    Google Scholar 

  8. Agullo, L. and Garcia, A. 1992. Characterization of noradrenaline-stimulated cyclic GMP formation in brain astrocytes in culture. Biochem J. 288:619–624.

    Google Scholar 

  9. Simmons, M. L. and Murphy, S. 1992. Induction of nitric oxide synthase in glial cells. J. Neurochem. 59:897–905.

    Google Scholar 

  10. Galea, E., Feinstein, D. L., and Reis, D. J. 1992. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA 89:10945–10949.

    Google Scholar 

  11. Kilbourn, R. G. and Belloni, P. 1990. Endothelial cell production of nitrogen oxides in response to interferon in combination with tumor necrosis factor, interleukin-1, or endotoxin. J. Natl. Cancer Inst. 82:772–776.

    Google Scholar 

  12. Minc-Golomb, D., Yadid, G., Tsarfaty, I., Resau, J. H., and Schwartz, J. P. 1996. In vivo expression of inducible nitric oxide synthase in cerebellar neurons. J. Neurochem. 66:1504–1509.

    Google Scholar 

  13. Graham, E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1993. Brain cell membrane Na+, K+-ATPase modification following hypoxia in the guinea pig fetus. Neurosci. Lett. 153:93–97.

    Google Scholar 

  14. Mishra, O. P. and Delivoria-Papadopoulos, M. 1988. Na+, K+-ATPase in developing fetal guinea pig brain and the effect of maternal hypoxia. Neurochem. Res. 13:765–770.

    Google Scholar 

  15. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. C. 1989. Lipid per oxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem. Res. 14:845–851.

    Google Scholar 

  16. Mishra, O. P., Zanelli, S., Ohnishi, S. T., and Delivoria-Papadopoulos, M. 2000. Hypoxia-induced generation of nitric oxide free radicals in cerebral cortex of newborn guinea pigs. Neurochem. Res. 25:1559–1565.

    Google Scholar 

  17. Numagami, Y., Zubrow, A. B., Mishra, O. P., and Delivoria-Papadopoulos, M. 1997. Lipid free radical generation and brain cell membrane alteration following nitric oxide synthase inhibition during cerebral hypoxia in the newborn piglet. J. Neurochem. 69:1542–1547.

    Google Scholar 

  18. Harik, S. I., Doul, G. H., and Dick, A. P. K. 1985. Specific ouabain binding to brain microvessels and choroid plexus. J. Cereb. Blood Flow Metab. 5:156–160.

    Google Scholar 

  19. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randal, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  20. Graham, E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1995. Effect of in utero hypoxia on the ouabain/strophanthidin binding site of the fetal guinea pig brain cell membrane Na+, K+-ATPase. Neurosci. Lett. 185:159–162.

    Google Scholar 

  21. Mishra, O. P. and Delivoria-Papadopoulos, M. 1992. Modification of modulatory sites of NMDA receptor in the fetal guinea pig brain during development. Neurochem. Res. 17:1223–1228.

    Google Scholar 

  22. Hoffman, D. J., McGowan, J. E., Marro, P. J., and Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Hypoxia-induced modification of the N-methyl-D-aspartate receptor in the brain of the newborn piglet. Neurosci. Lett. 167:156–160.

    Google Scholar 

  23. Fritz, K., Mishra, O. P., and Delivoria-Papadopoulos, M. 1996. Effects of 3-(2 carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP) on NMDA receptor binding characteristics and brain cell membrane function during cerebral hypoxia in newborn piglets. Brain. Res. 729:66–74.

    Google Scholar 

  24. Zanelli, S., Numagami, Y., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1999. NMDA receptor mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem. Res. 24:437–446.

    Google Scholar 

  25. Groenendaal, F., Mishra, O. P., McGowan, J. E., and Delivoria-Papadopoulos, M. 1995. Brain cell membrane Na+, K+-ATPase activity after inhibition of cerebral nitric oxide synthase by intravenous NG-Nitro-L-Arginine in newborn piglets. Biol. Neonate 68:419–425.

    Google Scholar 

  26. Bolanos, J. P., Almeida, A., Stewart, V., Peuchen, S., Land, J. M., Clark, J. B., and Heales, S. J. R. 1997. Nitric oxidemediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68:2227–2240.

    Google Scholar 

  27. Van der Veen, R. C., Hinton, D. R., Incardonna, F., and Hofman, F. M. 1997. Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J. Neuroimmunol. 77:1–7.

    Google Scholar 

  28. Groenendaal, F., Mishra, O. P., McGowan, J. E., Hoffman, D. J., and Delivoria-Papadopoulos, M. 1996. Cytosolic and membrane-bound cerebral nitric oxide synthase activity during hypoxia in cortical tissue of newborn piglets. Neurosci. Lett. 206:121–124.

    Google Scholar 

  29. Lipton, S. A., Choi, Y., Pan, Z., Lei, S. Z., Chen, H. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    Google Scholar 

  30. Stewart, V. C., Giovanni, G., Land, J. M., McDonald, W. I., Clark, J. B., and Heales, S. J. R. 1997. Pretreatment of astrocytes with Interferon-α/β impairs interferon-γ induction of nitric oxide synthase. J. Neurochem. 68:2547–2551.

    Google Scholar 

  31. Mishra, O. P. and Delivoria-Papadopoulos, M. 1999. Cellular mechanisms of hypoxic injury in the developing brain. 48:233–238.

    Google Scholar 

  32. Tan, S., Zhou, F., Nielsen, V. G., Wang, Z., Gladson, C. L., and Parks, D. A. 1998. Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the fetal rabbit brain. J. Neuropath Exp. Neur. 57:544–553.

    Google Scholar 

  33. Imaizumi, S., Kondo, T., Deli, M. A., Gobbel, G., Joo, F., Epstein, C. J., Yoshimoto, T., and Chan, P. H. 1996. The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem. Int. 29:205–211.

    Google Scholar 

  34. Beckman, J. S. 1994. Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury. Ann. NY Acad. Sci. 738:69–75.

    Google Scholar 

  35. Schulz, J. B., Matthews, R. T., and Beal, M. F. 1995. Role of nitric oxide in neurodegenerative diseases. Neurology 8:480–486.

    Google Scholar 

  36. Medele, R. J., Stummer, W., Reulen, H. J., and Steiger, H. J. 1996. Evidence for peroxidative damage by nitric oxide in experimental chronic cerebral vasospasm. Neurol. Res. 18:277–280.

    Google Scholar 

  37. Althaus, J. S., Oien, T. T., Fici, G. J., and Scherch, H. M., Sethy, V. H., and VonVoigtlander, P. F. 1994. Structure activity relationships of peroxynitrite scavengers an approach to nitric oxide neurotoxicity. Res. Comm. Chem. Path. Pharm. 83:243–254.

    Google Scholar 

  38. Szabo, C. 1996. Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain. Res. Bullet. 41:131–141.

    Google Scholar 

  39. Beckman, J. S., Ye, Y. Z., Chen, J., and Conger, K. A. 1996. The interactions of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Adv. Neurol. 71:339–354.

    Google Scholar 

  40. Numagami, Y., Sato, S., and Ohnishi, S. T. 1996. Attenuation of rat ischemic brain damage by aged garlic extracts. A possible protecting mechanism as antioxidants. Neurochem. Int. 29:135–143.

    Google Scholar 

  41. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. 1993. NMDA-dependent superoxide production and neurotoxicity. 364:535–537.

    Google Scholar 

  42. Gunasekar, P. G., Kanthasamy, A. G., Borowitz, J. L., and Isom, G. E. 1995. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implications for cell death. J. Neurochem. 65:2016–2021.

    Google Scholar 

  43. Patel, M., Day, B. J., Crapo, J. D., Fridowich, I., and McNamara, J. O. 1996. Requirement for superoxide in excitotoxic cell death. Neuron 16:345–355.

    Google Scholar 

  44. Cazevielle, C., Muller, A., Meyner, F., and Bonne, C. 1993. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free. Radic. Biol. Med. 14:389–395.

    Google Scholar 

  45. Beckman, J. S. 1991. The double-edged role of nitric oxide in brain function and superoxide anion. J. Dev. Physiol. 15:53–59.

    Google Scholar 

  46. Forman, L. J., Liu, P., Nagele, R. G., Yin, K., and Wong, P. Y. K. 1998. Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem. Res. 23:141–148.

    Google Scholar 

  47. Fukuyama, N., Takizawa, S., Ishida, H., Hoshiai, K., Shinohara, Y., and Nakazawa, H. 1998. J. Cereb. Blood Flow Metabol. 18:123–129.

    Google Scholar 

  48. Tanaka, K., Shirai, T., Nagata, E., Dembo, T., and Fukuuchi, Y. 1997. Immunohistochemical detection of nitrotyrosine in postischemic cerebral cortex in gerbil. Neurosci. Lett. 235:85–88.

    Google Scholar 

  49. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620–1624.

    Google Scholar 

  50. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  51. Dorrepaal, C. A., Van Bel, F., Moison, R. M. W., Shadid, M., Van de Bor, M., Steendijk, P., and Berger, H. M. 1997. Oxidative stress during post-hypoxic-ischemic reperfusion in the newborn lamb: the effect of nitric oxide synthesis inhibition. Pediatr. Res. 41:321–326.

    Google Scholar 

  52. Onitsuka, M., Mihara, S., Yamamoto, S., Shigemori, M., and Higashi, H. 1998. Nitric oxide contributes to ireversible membrane dysfunction caused by experimental ischemia in rat hippocampal CA1 neurons. Neurosci. Res. 30:7–12.

    Google Scholar 

  53. Kamii, H., Mikawa, S., Murakami, K., Kinouchi, H., Yoshimoto, T., Reola, L., Carlson, E., Epstein, C. J., and Chan, P. H. 1996. Effects of nitric oxide synthase inhibition on brain infarction in SOD-1 transgenic mice following transient focal cerebral ischemia. J. Cereb. Blood Flow Metabol. 16:1153–1157.

    Google Scholar 

  54. Keller, J. N., Kindy, M. S., Holtsberg, F. W., StClair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., BruceKeller, A. J., Hutchins, J. B., and Mattson, M. P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury. Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18:687–697.

  55. Wu, S., Nagashima, T., Ikeda, K., Kondoh, T., Yamaguchi, M., and Tamaki, N. 1997. The mechanism of free radical generation in brain capillary endothelial cells after anoxia and reoxygenation. Acta Neurochir. 70:37–39.

    Google Scholar 

  56. Dawson, V. L. and Dawson, T. M. 1996. Nitric oxide neurotoxicity. J. Neuroanat. 10:179–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qayyum, I., Zubrow, A.B., Ashraf, Q.M. et al. Nitration as a Mechanism of Na+, K+-ATPase Modification During Hypoxia in the Cerebral Cortex of the Guinea Pig Fetus. Neurochem Res 26, 1163–1169 (2001). https://doi.org/10.1023/A:1012331108641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012331108641

Navigation