Skip to main content
Log in

Abstract

Epidermis contains a compartment of stem cells but currently there is no common criterion to recognize individual stem cells with any confidence. Epidermis appears to contain stem cells of different levels of maturity and it is very likely that the main repository of epidermal stem cells is located in the hair follicle from which cells can emigrate into epidermis and also give rise to follicular and sebaceous keratinocytes. Epidermis consists of proliferative units containing stem and transit-amplifying cells, but the exact size of a proliferative unit cannot be measured accurately. The available data suggest that populations of stem and transit-amplifying cells are not discrete but represent a continuum from cells with a high self-renewal capacity and a low probability of differentiation to those with low self-renewal capacities and high commitments to differentiation. Stem cells occupy a special niche that provides a microenvironment, including an adhesion of stem cells to the basal membrane and their paracrine interactions with neighbor epidermal and mesenchymal cells. The fate of an epidermal stem cell depends on its prehistory and microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams, J.C. andWatt, F.M., Fibronectin Inhibits the Terminal Differentiation of Human Keratinocytes, Nature, 1989, vol. 340, pp. 307-309.

    Google Scholar 

  • Barrandon, Y. andGreen, H., Three Clonal Types of Keratinocyte with Different Capacities for Multiplication, Proc. Nat. Acad. Sci. USA, 1987, vol. 84, pp. 2302-2306.

    Google Scholar 

  • Bickenbach, J.R., Identification and Behaviour of Label-Retaining Cells in Oral Mucosa and Skin, J. Dent. Res., 1981, vol. 60, pp. 1611-1620.

    Google Scholar 

  • Bjerknes, M.,Cheng, H., andErlandsen, S., Functional Gap Junctions in Mouse Small Intestinal Crypts, Anat. Rec., 1985, vol. 212, pp. 364-367.

    Google Scholar 

  • Boudreau, N.,Werb, Z., andBissel, M.J., Suppression of Apoptosis by Basement Membrane Requires Three-Dimensional Tissue Organization and Withdrawal from the Cell Cycle, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 3509-3513.

    Google Scholar 

  • Coffey, R.J.,Derynck, R.,Wilcox, J.N., et al., Production and Autoinduction of Transforming Growth Factor-??in Human Keratinocytes, Nature, 1987, vol. 328, pp. 817-820.

    Google Scholar 

  • Collins, M.K.L.,Perkins, G.R.,Rodriguez-Tarduchy, G., et?al., Growth Factors as Survival Factors: Regulation of Apoptosis, BioEssays, 1993, vol. 16, pp. 133-138.

    Google Scholar 

  • Compton, C.C.,Gill, J.M.,Bradford, D.A., et al., Skin Regenerated from Cultured Epithelial Autografts on Full-Thickness Burn Wounds from 6 Days to 5 Years after Grafting. A Light, Electron Microscopic and Immunochemical Study, Lab. Invest., 1989, vol. 60, pp. 600-612.

    Google Scholar 

  • Cotsarelis, G.,Sun, T.-T., andLavker, R.M., Label-Retaining Cells Reside in the Bulge of the Pilosebaceous Unit: Implications for Follicular Stem Cells, Hair Cycle, and Skin Carcinogenesis, Cell, 1990, vol. 61, pp. 1329-1337.

    Google Scholar 

  • Franzi, A.T.,D'Anna, F.,Zica, Z., andTrabucchi, E., Histological Evaluation of Human Cultured Epithelium before and after Grafting, Burns, 1992, vol. 18,suppl.1, pp. 26S-31S.

    Google Scholar 

  • Frisch, S.M. andFrancis, H., Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis, J. Cell Biol., 1994, vol. 124, pp. 619-626.

    Google Scholar 

  • Grinnell, F., The Activated Keratinocyte: Upregulation of Cell Adhesion and Migration during Wound Healing, J.?Trauma, 1990, vol. 30, pp. S144-S149.

    Google Scholar 

  • Hall, P.A. andWatt, F.M., Stem Cells: The Generation and Maintenance of Cellular Diversity, Development, 1989, vol. 106, pp. 619-633.

    Google Scholar 

  • Hertle, M.D.,Adams, J.C., andWatt, F.M., Integrin Expression during Human Epidermal Development in vivo and in vitro, Development, 1991, vol. 112, pp. 193-206.

    Google Scholar 

  • Jones, P.H.,Harper, S., andWatt, F.M., Stem Cell Patterning and Fate in Human Epidermis, Cell, 1995, vol. 80, pp. 83-93.

    Google Scholar 

  • Jones, P.H. andWatt, F.M., Separation of Human Epidermal Stem Cells from Transit Amplifying Cells on the Basis of Differences in Integrin Function and Expression, Cell, 1993, vol. 73, pp. 713-724.

    Google Scholar 

  • Krohn, P.L., Review Lectures on Senescence. II. Heterochronic Transplantation in the Study of Ageing, Proc. Roy. Soc. Ser. B, 1962, vol. 157, pp. 128-147.

    Google Scholar 

  • Lavker, R.M. andSun, T.-T., Heterogeneity in Epidermal Basal Keratinocytes: Morphological and Functional Correlations, Science, 1982, vol. 215, pp. 1239-1241.

    Google Scholar 

  • Lavker, R.M. andSun, T.-T., Epidermal Stem Cells, J. Invest. Dermatol., 1983, vol. 81, pp. 121-127.

    Google Scholar 

  • Li, A.,Simmons, P.J., andKaur, P., Identification and Isolation of Candidate Human Keratinocyte Stem Cells Based on Cell Surface Phenotype, Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 3902-3907.

    Google Scholar 

  • Limat, A.,Breitkreutz, D.,Hunziker, T., et al., Restoration of the Epidermal Phenotype by Follicular Outer Root Sheath Cells in Recombinant Culture with Dermal Fibroblasts, Exp. Cell Res., 1991, vol. 194, pp. 218-227.

    Google Scholar 

  • Maas-Szabowski, N.,Shimotoyodome, A., andFusenig, N.E., Keratinocyte Growth Regulation in Fibroblast Cocultures via a Double Paracrine Mechanism, Cell Sci., 1999, vol. 112, pp. 1843-1853.

    Google Scholar 

  • Maas-Szabowski, N.,Stark, H.-J., andFusenig, N.E., Keratinocyte Growth Regulation in Defined Organotypic Cultures through IL-1-Induced Keratinocyte Growth Factor Expression in Resting Fibroblasts, J. Invest. Dermatol., 2000, vol. 114, pp. 1075-1084.

    Google Scholar 

  • Mackenzie, I.C. andBickenbach, J.R., Label-Retaining Keratinocytes and Langerhans Cells in Mouse Epithelia, Cell Tissue Res., 1985, vol. 242, pp. 551-556.

    Google Scholar 

  • Malcovati, M. andTenchini, M.L., Cell Density Affects Spreading and Clustering, but not Attachment, of Human Keratinocytes in Serum-Free Medium, Cell Sci., 1991, vol. 99, pp. 387-395.

    Google Scholar 

  • Miller, S.J.,Burke, E.M.,Rader, M.D., et al., Re-Epithelization of Porcine Skin by the Sweat Apparatus, J. Invest. Dermatol., 1998, vol. 110, pp. 13-19.

    Google Scholar 

  • Morhenn, V.B.,Shreiber, A.B.,Soriero, O., et al., A Monoclonal Antibody against Basal Cells of Human Epidermis. Potential Use in the Diagnosis of Cervical Neoplasia, J. Clin. Invest., 1985, vol. 76, pp. 1978-1983.

    Google Scholar 

  • Morris, R.J. andPotten, C.S., Slow Cycling (Label-Retaining) Epidermal Cells Behave Like Clonogenic Stem Cells in vitro, Cell Proliferation, 1994, vol. 27, pp. 279-289.

    Google Scholar 

  • Morrison, S.J.,Shah, N.M., andAnderson, D.J., Regulatory mechanisms in Stem Cell Biology, Cell, 1997, vol. 88, pp. 287-298.

    Google Scholar 

  • O'shaughnessy, R.F.,Seery, J.P.,Celis, J.E., et al., PA-FABP, a Novel Marker of Human Epidermal Transit Amplifying Cells Revealed by 2D Protein Gel Electrophoresis and cDNA Array Hybridization, FEBS Lett., 2000, vol. 486, pp. 149-154.

    Google Scholar 

  • Partrige, M.,Green, M.R.,Langdon, I.D., andFeldman, M., Production of TGF-??and TGF-??by Cultured Keratinocytes, Skin and Oral Squamous Cell Carcinomas-Potential Autocrine Regulation of Normal and Malignant Epithelial Cell Proliferation, Br. J. Cancer, 1989, vol. 60, pp. 542-548.

    Google Scholar 

  • Pitts, J.D.,Kam, E., andMorgan, D., The Role of Junctional Communication in Cellular Growth Control and Tumorigenesis, Gap Junctions, New York: Liss, 1988, pp. 397-409.

    Google Scholar 

  • Plopper, G.E.,McNamee, H.P.,Dike, L.E., et al., Convergence of Integrin and Growth Factor Receptor Signaling Pathways within the Focal Adhesion Complex, Mol. Biol. Cell., 1995, vol. 6, pp. 1349-1365.

    Google Scholar 

  • Potten, C.S., The Epidermal Proliferative Unit: The Possible Role of the Central Basal Cell, Cell Tissue Kinet., 1974, vol. 7, pp. 77-88.

    Google Scholar 

  • Potten, C.S., Cell Replacement in Epidermis (Keratopoiesis) via Discrete Units of Proliferation, Int. Rev. Cytol., 1981, vol. 69, pp. 271-318.

    Google Scholar 

  • Potten, C.S., Stem Cells in Epidermis from the Back of the Mouse, Stem Cells: Their Identification and Characterization, Potten, C.S., Ed., Edinburgh, 1983, pp. 200-232.

  • Potten, C.S., Cell Cycles in Cell Hierarchies, Int. J. Rad. Biol., 1986, vol. 49, pp. 257-278.

    Google Scholar 

  • Potten, C.S. andHendry, J.H., Clonogenic Cells and Stem Cells in the Epidermis, Int. J. Radiat. Biol., 1973, vol. 24, pp. 537-540.

    Google Scholar 

  • Potten, C.S. andHendry, J.H., Differential Regeneration of Intestinal Proliferative Cells and Cryptogenic Cells after Irradiation, Int. J. Rad. Biol., 1975, vol. 27, pp. 413-424.

    Google Scholar 

  • Potten, C.S. andMorris, R.J., Epidermal Stem Cells in vivo, J. Cell Sci., 1988, vol. 10, suppl., pp. 45-62.

    Google Scholar 

  • Potten, C.S.,Schofield, R., andLajtha, L.G., A Comparison of Cell Replacement in Bone Marrow, Testis and Three Regions of Surface Epithelium, Biochim. Biophys. Acta, 1979, vol. 560, pp. 281-299.

    Google Scholar 

  • Potten, C.S.,Wichmann, H.E.,Dobek, K., et al., Cell Kinetic Studies in the Epidermis of Mouse. 3. The Percent Labelled Mitosis (PLM) Technique, Cell Tissue Kinet., 1982, vol. 18, pp. 59-70.

    Google Scholar 

  • Pullan, S.,Wilson, J.,Metcalfe, A., et al., Requirement of Basement Membrane for the Suppression of Programmed Cell Death in Mammary Epithelium, J. Cell Sci., 1996, vol. 109, pp. 631-642.

    Google Scholar 

  • Rheinwald, J.B. andGreen, H., Serial Cultivation of Strains of Human Epidermal Keratinocytes: The Formation of Keratinizing Colonies from Single Cells, Cell, 1975, vol. 6, pp. 331-344.

    Google Scholar 

  • Rheinwald, J.B. andGreen, H., Epidermal growth Factor and the Multiplication of Cultured Human Epidermal keratinocytes, Nature, 1977, vol. 265, pp. 421-424.

    Google Scholar 

  • Rochat, A.,Kobayashi, K., andBarrandon, Y., Location of Stem Cells of Human Hair Follicles by Clonal Analysis, Cell, 1994, vol. 76, pp. 1063-1073.

    Google Scholar 

  • Rodeck, U.,Jost, M.,Kari, C., et al., EGF-R Dependent Regulation of Keratinocyte Survival, J. Cell Sci., 1997, vol. 110, pp. 113-121.

    Google Scholar 

  • Samuel, J.,Noujaim, A.A.,Willans, D.J., et al., A Novel Marker for Basal (Stem) Cells of Mammalian Squamous Epithelia and Squamous Cell Carcinomas, Cancer Res., 1989, vol. 49, pp. 2465-2470.

    Google Scholar 

  • Schofield, R., The Relationship between the Spleen Colony-Forming Cell and the Haemopoietic Stem Cell, Blood Cells, 1978, vol. 4, pp. 7-25.

    Google Scholar 

  • Taylor, G.,Lehrer, M.S.,Jensen, P.J., et al., Involvement of Follicular Stem Cells in Forming not only the Follicle but also the Epidermis, Cell, 2000, vol. 102, pp. 451-461.

    Google Scholar 

  • Terskikh, V.V. andVasil'ev, A.V., Cultivation and Transplantation of Epidermal Keratinocytes, Int. Rev. Cytol., 1999, vol. 188, pp. 41-72.

    Google Scholar 

  • Vorotelyak, E.A.,Satdykova, G.P.,Vasil'ev, A.V., andTerskikh, V.V., Electron Microscope Study of Migrating Keratinocyte Colonies, Izv. Ross. Akad. Nauk. Ser. Biol., 1996, no. 4, pp. 485-489.

  • Watt, F.M., Epidermal Stem Cells: Markers, Patterning and the Control of Stem Cell Fate, Phil. Trans. Roy. Soc. Lond. B., 1998, vol. 353, pp. 831-837.

    Google Scholar 

  • Yang, J.-S.,Lavker, R.M., andSun, T.-T., Upper Human Hair Follicle Contains a Subpopulation of Keratinocytes with Superior in vitro Proliferative Potential, J. Invest. Dermatol., 1993, vol. 101, pp. 652-659.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terskikh, V.V., Vasil'ev, A. Epidermal Stem Cells. Biology Bulletin 28, 624–629 (2001). https://doi.org/10.1023/A:1012328521458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012328521458

Keywords

Navigation