Skip to main content
Log in

Isolation and Some Physical and Chemical Properties of Elastase and Cathepsin G from Dog Neutrophils

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kokryakov, V. N. (1990) Vopr.Med.Khim., 6, 13–16.

    Google Scholar 

  2. Kokryakov, V. N. (1999) Biology of Animal Antibiotics [in Russian], Nauka, St. Petersburg.

    Google Scholar 

  3. Lehrer, R. I., Ganz, T., and Selsted, M. E. (1988) Ann.Int.Med., 109, 127–142.

    PubMed  Google Scholar 

  4. Gabay, J. E., and Almeida, R. P. (1993) Curr.Opin.Immunol., 5, 97–102.

    PubMed  Google Scholar 

  5. Levy, O. (1996) Eur.J.Haematol., 56, 263–277.

    PubMed  Google Scholar 

  6. Garcia, R., Gusmani, L., Murgia, R., Guarnaccia, C., Cinco, M., and Rottini, G. (1998) Infection Immunity, 6, 1408–1412.

    Google Scholar 

  7. Miyasaki, K. T., Bodeau, A. L., Pohl, J., and Shafer, W. M. (1993) Antimicrobial Agents Chemotherapy, 37, 2710–2715.

    Google Scholar 

  8. Shafer, W. M., Shepherd, M. E., Boltin, B., Wells, L., and Pohl, J. (1993) Infection Immunity, 61, 1900–1908.

    PubMed  Google Scholar 

  9. Chertov, O., Michiel, D. F., Xu, L., Wang, J. M., Tani, K., Murphy, W. J., Longo, D. L., Taub, D. D., and Oppenheim, J. J. (1996) J.Biol.Chem., 271, 2935–2940.

    PubMed  Google Scholar 

  10. Klickstein, L. B., Kaempfer, C. E., and Weintraub, B. U. (1982) J.Biol.Chem., 257, 1504–1506.

    Google Scholar 

  11. Si-Tahar, M., Renesto, P., Falet, H., Rendu, F., and Chignard, M. (1996) Biochem.J., 313, 401–408.

    PubMed  Google Scholar 

  12. Bjork, P., Axcelsson, L., and Ohlsson, K. (1991) Biol.Chem.Hoppe-Seyler., 372, 419–426.

    PubMed  Google Scholar 

  13. Delshammar, M., and Ohlsson, K. (1976) Eur.J.Biochem., 69, 125–131.

    PubMed  Google Scholar 

  14. Ohlsson, K. (1978) in Neutral Proteases of Human Polymorphonuclear Leukocytes(Havemann, K., and Janoff, A., eds.) Baltimore, Munich, pp. 89–101.

    Google Scholar 

  15. Desser, R. K., Himmelhoch, S. R., Evans, W. H., Januska, M., Mage, M., and Shelton, E. (1972) Arch.Biochem.Biophys., 148, 452–465.

    PubMed  Google Scholar 

  16. Panyim, S., and Chalkley, R. (1969) Arch.Biochem.Biophys., 130, 337–346.

    PubMed  Google Scholar 

  17. Dawson, M., Elliott, D., Elliott, W., and Jones, K. (1991) Data for Biochemical Research [Russian translation], Mir, Moscow.

    Google Scholar 

  18. Schagger, H., and von Jagow, G. (1987) Analyt.Biochem., 166, 368–379.

    PubMed  Google Scholar 

  19. Visser, L., and Blaut, E. (1972) Biochim.Biophys.Acta, 268, 257–260.

    PubMed  Google Scholar 

  20. Hummel, B. C. W. (1959) Canad.J.Biochem.Physiol., 37, 1393–1399.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J.Biol.Chem., 193, 265–275.

    PubMed  Google Scholar 

  22. Janoff, A., and Feinstein, G. (1978) in Neutral Proteases of Human Polymorphonuclear Leukocytes(Havemann, K., and Janoff, A., eds.) Baltimore, Munich, pp. 102–117.

    Google Scholar 

  23. Schmidt, W., and Havemann, K. (1978) in Neutral Proteases of Human Polymorphonuclear Leukocytes(Havemann, K., and Janoff, A., eds.) Baltimore, Munich, pp. 150–160.

    Google Scholar 

  24. Sinha, S., Watorek, W., Karr, S., Giles, J., Bode, W., and Travis, J. (1987) Proc.Natl.Acad.Sci.USA, 84, 2228–2232.

    PubMed  Google Scholar 

  25. Taylor, J. C., and Crawford, I. P. (1975) Arch.Biochem.Biophys., 169, 91–101.

    PubMed  Google Scholar 

  26. Kraeva, L. N., Kokryakov, V. N., Chesnokov, I. N., Yakovleva, M. F., and Lyzlova, S. N. (1988) Biokhimiya, 53, 655–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlov, M.N., Lodygin, P.A., Andreeva, Y.V. et al. Isolation and Some Physical and Chemical Properties of Elastase and Cathepsin G from Dog Neutrophils. Biochemistry (Moscow) 66, 1008–1013 (2001). https://doi.org/10.1023/A:1012325810788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012325810788

Navigation