Skip to main content
Log in

Changes in the Glutamate Release and Uptake of Cerebellar Cells in Perinatally Nicotine-Exposed Rat Pups

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebellar granule and glial cells were cultured from 7 day-old rat pups after pre- and post-natal nicotine treatment. Ten days later, the basal release of glutamate in the granule cells prepared from the pre- and post-natally nicotine-exposed pups was higher and lower than the controls, respectively. The N-methyl-D-aspartate-induced release of glutamate was higher in the granule cells of post-natal nicotine exposed rats. However, the nicotine-induced glutamate release was either unchanged or was lower in the granule cells of all nicotine-treated pups. The basal glutamate uptake was higher in the glial cells from those exposed pre-natally and lower in the continuously nicotine-exposed pups. The sensitivities of L-trans-pyrrolidine-2,4-dicarboxylic acid on glutamate uptake were higher in all nicotine treated groups. There was a higher number of specific [3H]dizocilpine binding sites in the pre- or continuously nicotine-exposed group. These results suggest that the cerebellar cell properties are altered after perinatal nicotine exposure and that the development of an excitatory amino acid system might be affected differently depending on the nicotine exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Collingridge, G. L. and Lester, R. A. J. 1989. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 41:143–210.

    Google Scholar 

  2. Meldrum, B. and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.

    Google Scholar 

  3. Fairman, W. A., Vandenverg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G. 1995. An excitatory amino acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603.

    Google Scholar 

  4. Mennerick, S. and Zorumski, C. F. 1994. Glial contribution to excitatory neurotransmission in cultured hippocampal cells. Nature 368:59–62.

    Google Scholar 

  5. Nicholis, D. and Attwell, D., 1990. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.

    Google Scholar 

  6. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M., Wang, Y., Schieke, J. P., and Welty, D. F. 1996. Knockout of glutamate transporters reveals a major role for astroglia transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    Google Scholar 

  7. Staubli, U., Rogers, G., and Lynch G. 1994. Facilitation of glutamate receptors enhances memory. Proc. Natl. Acad. Sci. USA 91:777–781.

    Google Scholar 

  8. Ossowska, K. 1993. Disturbances in neurotransmission processes in aging and age-related disease. Br. J. Pharmacol. 45:109–131.

    Google Scholar 

  9. Maria, D. M., Carmina, M., and Marta L. 1998. Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacol. 37:847–857.

    Google Scholar 

  10. Martin, B. R. 1986. Nicotine receptors in the central nervous system. Pages 393–415, in Conn, P. M. (ed), The receptors. Academic Press, New York.

    Google Scholar 

  11. Aramakis, V. B. and Metherate, R. 1998. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J. Neurosci. 18:8485–8495.

    Google Scholar 

  12. Fung, Y. K., Schmid, M. J., Anderson, T. M., and Lau, Y. 1996. Effects of nicotine withdrawal on central dopaminergic systems. Pharmacol. Biochem. Behav. 53:635–640.

    Google Scholar 

  13. Li, X., Zoli, M., Finnman, U., NeNovere, N., Changeux, J., and Fuxe, K. 1995. A single (-)-nicotine injection causes change with a time delay in the affinity of striatal D2 receptors for antagonist, but not for agonist, nor in the D2 receptor mRNA levels in the rat substantia nigra. Brain Res. 678:157–167.

    Google Scholar 

  14. Zhang, X., Gong, Z., and Nordberg, A. 1994. Effects of chronic treatment with (+)-and (-)-nicotine on nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors in rat brain. Brain Res. 644:32–39.

    Google Scholar 

  15. Perez De La Mora, M., Mendez-Franco, J., Salceda, R., Aguirre, J. A., and Fuxe, K. 1991. Neurochemical effects of nicotine on glutamate and GABA mechanisms in the rat brain. Acta Physiol. Scand. 141:241–250.

    Google Scholar 

  16. Garcia-Munoz, M., Patino, P., Young, S. J., and Groves, P. M. 1996. Effects of nicotine on dopaminergic nigrostriatal axons requires stimulation of presynaptic glutamatergic receptors. J. Pharmacol. Exp. Ther. 277:1685–1693.

    Google Scholar 

  17. Fedele, E., Varnier, G., Ansaldo, M. A., and Raiteri, M. 1998. Nicotine administration stimulates the in vivo N-methyl-Daspartate receptor/nitric oxide/cyclic GMP pathway in rat hippocampus through glutamate release. Br. J. Pharmacol. 125:1042–1048.

    Google Scholar 

  18. Wall, A., Gong, Z. H., Johnson, A. E., Meyerson, B., and Zhang, X. 2000. Cross-tolerance in drug response and differential changes in central nicotinic and N-methyl-D-aspartate receptor binding following chronic treatment with either (+)-or (-)-nicotine. Psychopharmacol. 148:186–199.

    Google Scholar 

  19. Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., and Kimura, J. 1994. Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 644:181–187.

    Google Scholar 

  20. Borlongan, C. V., Shytle, R. D., Ross, S. D., Shimizu, T., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. 1995. (-)-Nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp. Neurol. 136:261–265.

    Google Scholar 

  21. Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B., and Buccafusco, J. J. 1997. Cognitive impairment in spontaneously hypertensive rats: Role of central nicotinic receptors. I. Brain Res. 771:89–103.

    Google Scholar 

  22. Newman, M. B., Shytle, R. D., and Sanberg, P. R. 1999. Locomotor behavioral effects of prenatal and postnatal nicotine exposure in rat offspring. Behav. Pharmacol. 10:700–706.

    Google Scholar 

  23. Ajarem, J. S. and Ahmad, M. 1998. Prenatal nicotine exposure modifies behavior of mice through early development. Pharmacol. Biochem. Behav. 59:313–318.

    Google Scholar 

  24. Roth, R. H., Elsworth, J. D., and Morrow, B. A. 2000. Prenatal nicotine exposure disrupts short-term memory in spontaneous object recognition task. Soc. Neurosci. Abs. 26(Pt. 1):1095.

    Google Scholar 

  25. Nordberg, A., Zhang, X., Fredriksson, A., and Eriksson, P. 1991. Neonatal nicotine exposure induces permanent changes in brain nicotine receptors and behaviour in adult mice. Dev. Brain Res. 63:201–207.

    Google Scholar 

  26. Thomas, J. D., Garrison, M. E., Slawecki, C. J., Ehlers, C. L., and Riley, E. P. 2000. Nicotine exposure during the neonatal brain growth spurt produces hyperactivity in preweanling rats. Neurotoxicol. Teratol. 22:695–701.

    Google Scholar 

  27. Tizabi, Y., Russell, L. T., Nespor, S. M., Perry, D. C., and Grunberg, N. E. 2000. Prenatal nicotine exposure: Effects on locomotor activity and central [125I]α-BT binding in rats. Pharmacol. Biochem. Behav. 66:495–500.

    Google Scholar 

  28. Lim, D. K., Park, S. H., and Choi W. J. 2000. Subacute nicotine exposure in cultured cerebellar cells increased the release and uptake of glutamate. Arch. Pharm. Res. 23:488–494.

    Google Scholar 

  29. Rop, P. P., Grimaldi, F., Oddoze, C., and Viala, A. 1993. Determination of nicotine and its main metabolites in urine by high performance liquid chromatography. J. Chromatogr. 612:302–309.

    Google Scholar 

  30. McCaslin, P. P. and Morgan, W. W. 1987. Cultured cerebellar cells as in vitro model of excitatory amino acid receptor function. Brain Res. 417:380–384.

    Google Scholar 

  31. Shoup, R. E., Allison, L. A., and Mayer, G. S. 1984. O-phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemisty. Anal. Chem. 56:1089–1096.

    Google Scholar 

  32. Foster, A. and Wong, E. H. 1987. The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain. Br. J. Pharmacol. 91:403–412.

    Google Scholar 

  33. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  34. Toth, E. 1996. Effect of nicotine on the level of extracellular amino acids in the hippocampus of rat. Neurochem. Res. 21:903–907.

    Google Scholar 

  35. Reid, M. S., Fox, L., Ho, L. B., and Berger, S. P. 2000. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: Neuropharmacological characterization. Synapse 35:129–136.

    Google Scholar 

  36. Mansvelder, H. D. and McGehee, D. S. 2000. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357.

    Google Scholar 

  37. Aizenman, E., Tang, L. H., and Reynolds, I. 1991. Effects of nicotinic agonist on NMDA receptor. Brain Res. 551:355–357.

    Google Scholar 

  38. Resink, A., Villa, M., Benke, D., Hidaka, H., Mohler, H., and Balazs, R. 1996. Characterization of agonist-induced down-regulation of NMDA receptors in cerebellar granule cell cultures. J. Neurochem. 66:369–377.

    Google Scholar 

  39. Audesirk, T. and Cabell, L. 1999. Nanomolar concentration of nicotine and cotinine alter the development of cultured hippocampal neurons via non-acetylcholine receptor-mediated mechanisms. Neurotoxicol. 20:639–646.

    Google Scholar 

  40. Tizabi, Y. and Perry, D. C. 2000. Prenatal nicotine exposure is associated with an increase in [125I]epibatidine binding in discrete cortical regions in rats. Pharmacol. Biochem. Behav. 67:319–323.

    Google Scholar 

  41. Aramakis, V. B., Hsieh, C. Y., Leslie, F. M., and Metherate, R. 2000. A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. J. Neurosci. 20:6106–6116.

    Google Scholar 

  42. Amador, M. and Dani, J. A. 1995. Mechanism for modulation of nicotinic acetylcholine receptors that can influence synaptic transmission. J. Neurosci. 15:4525–4532.

    Google Scholar 

  43. Miller, H. P., Levey, A. I., Rothstein, J. D., Tzingounis, A. V., and Conn, P. J. 1997. Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J. Neurochem. 68:1564–1570.

    Google Scholar 

  44. Miyazaki, H., Nakamura, Y., Arai, T., and Kataoka, K. 1997. Increase of glutamate uptake in astrocytes: A possible mechanism of action of volatile anesthetics. Anesthesiology 86:1359–1366.

    Google Scholar 

  45. Zhou, B. G. and Norenberg, M. D. 1999. Ammonia downregulates GLAST mRNA glutamate transporter in rat astrocyte cultures. Neurosci. Lett. 276:145–148.

    Google Scholar 

  46. Kondo, K., Hashimoto, H., Kitanaka, J., Sawada, M., Suzumura, A., Marunouchi, T., and Baba, A. 1995. Expression of glutamate transporters in cultured glial cells. Neurosci. Lett. 188:140–142.

    Google Scholar 

  47. Yi, E. Y. and Lim, D. K. 1998. Effects of chronic lead exposure on glutamate release and uptake in cerebellar cells of rat pups. Arch. Pharm. Res. 21:113–119.

    Google Scholar 

  48. Swanson, R. A., Liu, J., Miller, J. M., Rothstein, J. D., Farrell, K., Stein, B. A., and Longuemare, M. C. 1997. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J. Neurosci. 17:932–940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, D.K., Kim, H.S. Changes in the Glutamate Release and Uptake of Cerebellar Cells in Perinatally Nicotine-Exposed Rat Pups. Neurochem Res 26, 1119–1125 (2001). https://doi.org/10.1023/A:1012318805916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012318805916

Navigation