Skip to main content
Log in

Types, Symbolism of Representation of Steric Structure, and Conformations of Ion Pairs. Stereochemical Version of the Generalized Rule of Elimination

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Analysis of published data from the standpoint of the generalized rule of elimination demonstrated that in addition to contact and solvent-separated ion pairs, in elimination a species of a third type is generated, called spatially separated ion pair. This is an intermediate formed on the pathway of transformation of a contact ion pair to a solvent-separated one. Each of these ion pairs preserves its initial configuration of the bond C-nucleofuge starting from its origination to transformation into an elimination product, demonstrating discrete and inherent regio- and stereoselectivity: a contact ion pair shows nucleophilically controlled syn reactivity, and spatially- and solvent-separated ion pairs, electrophilically controlled syn and anti reactivity, respectively. The generalized rule of elimination allows almost faultless prediction of regio- and stereo- selectivity, being applicable to interpretation of even those published data which appear surprising or abnormal from the standpoint of the modern theoretical views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ingold, C.K., Structure and Mechanism in Organic Chemistry, London: Cornell Univ., 1969.

    Google Scholar 

  2. Lowry, T.H. and Richardson, K.S., Mechanism and Theory in Organic Chemistry, New York: Harper and Row, 1981.

    Google Scholar 

  3. March, J., Advanced Organic Chemistry, New York: Wiley, 1992.

    Google Scholar 

  4. Saunders, W.H. and Cockerill, A.F., Mechanism of Elimination Reaction, New York: Wiley, 1973.

    Google Scholar 

  5. Cockerill, A.F. and Harrison, R.G., The Chemistry of Double-bonded Functional Groups,Patai, S., Ed., New York: Wiley, 1977, part 1, ch. 4, pp. 149-319.

    Google Scholar 

  6. Dneprovskii, A.S. and Temnikova, T.I., Teoreticheskie osnovy organicheskoi khimii (Theoretical Principles of Organic Chemistry), Leningrad: Khimiya, 1979.

    Google Scholar 

  7. NcLennan, D.J., Tetrahedron, 1975, vol. 31, pp. 2999-3010.

    Google Scholar 

  8. More O'Ferral, R.A., The Chemistry of the Carbon3 Halogen Bond, Patai, S., Ed., London: Wiley, 1973, part 2, pp. 609-675.

    Google Scholar 

  9. Gevorkyan, A.A., Arakelyan, A.S., and Cockerill, A.F., Tetrahedron, 1997, vol. 53, no. 23, pp. 7947-7956.

    Google Scholar 

  10. Gevorkyan, A.A. and Sargsyan, M.S., Zh. Org. Khim., 1990, vol. 26, no. 8, pp. 1810-1814.

    Google Scholar 

  11. Gevorkyan, A.A., Kazaryan, P.I., Avakyan, S.V., and Simonyan, E.S., Khim. Geterotsikl. Soedin., 1989, no. 3, pp. 309-312.

    Google Scholar 

  12. Gevorkyan, A.A., Arakelyan, A.S., Khlopuzyan, Yu.G., and Dvoryanchikov, A.I., Zh. Org. Khim., 1996, vol. 32, no. 6, p. 947.

    Google Scholar 

  13. Gevorkyan, A.A., Arakelyan, A.S., and Obosyan, N.P., Zh. Org. Khim., 1997, vol. 67, no. 6, pp. 1050-1051.

    Google Scholar 

  14. Gevorkyan, A.A., Margaryan, A.Kh., and Obosyan, N.P., Abstracts of Papers, Konferentsiya po organicheskomu sintezu (Conf. on Organic Synthesis), Yerevan (Armenia), 1997, p. 33.

  15. Gevorkyan, A.A., Margaryan, A.Kh., and Obosyan, N.P., Abstracts of Papers, Mezhdunarodnyi simpozium [Mezhfaznyi kataliz: mekhanizm i primenenie v organicheskom sinteze] (Int. Symp. [Phase-Transfer Catalysis: Mechanism and Applications in Organic Synthesis]), St. Petersburg (Russia), 1997, pp. 22-24.

  16. Cram, D.J. and Sahyun, M.R.V., J. Am. Chem. Soc., 1963, vol. 85, no. 9, pp. 1257-1263.

    Google Scholar 

  17. Sahyun, M.R.V. and Cram, D.J., J. Am. Chem. Soc., 1963, vol. 85, no. 9, pp. 1263-1268.

    Google Scholar 

  18. Sicher, J., Svoboda, M., Pankova, M., and Zavada, J., Coll. Czech. Chem. Commun., 1971, vol. 36, pp. 3633-3649.

    Google Scholar 

  19. Bartch, R.A. and Zavada, J., Chem. Rev., 1980, vol. 80, no. 6, pp. 453-494.

    Google Scholar 

  20. Cram, D.J., J. Am. Chem. Soc., 1952, vol. 74, no. 9, pp. 213732148.

    Google Scholar 

  21. Scell, P.S. and Hall, W.L., J. Am. Chem. Soc., 1963, vol. 85, no. 18, pp. 2851-2852.

    Google Scholar 

  22. Biale, G., Parker, A.G., Smith, S.G., Stevens, I.D.R., and Winstein, S., J. Am. Chem. Soc., 1970, vol. 92, no. 1, pp. 115-122.

    Google Scholar 

  23. Zavada, J., Pankova, M., and Svoboda, M., Coll. Czech. Chem. Commun., 1976, vol. 41, no. 12, pp. 3778-3798.

    Google Scholar 

  24. Colter, A.K. and McKelvey, D.M., Can. J. Chem., 1965, vol. 43, no. 5, pp. 1282-1292.

    Google Scholar 

  25. Ions and Ion Pairs in Organic Reactions, Szware, M., Ed., London: Wiley, 1974, vol. 2, pp. 248-373.

    Google Scholar 

  26. Beletskaya, I.P., Usp. Khim., 1975, vol. 44, no. 12, pp. 2205-2248.

    Google Scholar 

  27. Reichardt, Ch., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988.

    Google Scholar 

  28. Dvorko, G.F., Cherevach, T.V., and Zhvotyuk, M.N., Zh. Obshch. Khim., 1986, vol. 56, no. 2, pp. 434-441.

    Google Scholar 

  29. Dvorko, G.F. and Ponomarev, N.E., Zh. Obshch. Khim., 1997, vol. 67, no. 9, pp. 908-921.

    Google Scholar 

  30. Bordwell, F.G., Acc. Chem. Res., 1970, vol. 3, no. 9, pp. 281-290.

    Google Scholar 

  31. Bentley, T.W. and Sleyer, P., J. Am. Chem. Soc., 1976, vol. 98, no. 24, pp. 7658-7666.

    Google Scholar 

  32. Winstein, S., Darwish, D., and Holness, N.J., J. Am. Chem. Soc., 1956, vol. 78, no. 12, p. 2915.

    Google Scholar 

  33. Chemical Reactivity and Reaction Paths, Klopman, G., Ed., New York: Wiley3Interscience, 1974.

    Google Scholar 

  34. Woodward, R.B. and Hoffmann, R., The Conservation of Orbital Symmetry, Weinheim: Chemie, 1970.

    Google Scholar 

  35. Mare, P.B. de la and Vernon, C.A., J. Chem. Soc., 1956, no. 1, pp. 41-44.

    Google Scholar 

  36. Eliel, E.L. and Ro, R.S., Chem. Ind. (London), 1956, no. 2, pp. 251-252.

    Google Scholar 

  37. Bunnet, F.J., Surv. Progr. Chem., 1969, vol. 5, pp. 53-67.

    Google Scholar 

  38. Cram, D., Greene, F.D., and Depuy, C.H., J. Am. Chem. Soc., 1956, vol. 78, no. 4, pp. 790-796.

    Google Scholar 

  39. Cope, A.C. and Trumbull, E.R., in Organic Reactions, Cope, A.C., Ed., New York: Wiley, 1960, vol. 11, ch. 5.

    Google Scholar 

  40. Nace, H.R., in Organic Reactions, Cope, A.C., Ed., New York: Wiley, vol. 12, ch. 2.

  41. O'Connor, G.L. and Nace, H.R., J. Am. Chem. Soc., 1952, vol. 74, no. 21, pp. 5454-5459.

    Google Scholar 

  42. O'Connor, G.L. and Nace, H.R., J. Am. Chem. Soc., 1953, vol. 75, no. 9, pp. 2118-2123.

    Google Scholar 

  43. Maccoll, A., in Theoretical Organic Chemistry. Papers Presented to the Kekule Symp. (London, September 1958), London: Butterworths, 1959. Translated under the title Teoreticheskaya organicheskaya khimiya, Moscow: Inostrannaya literatura, 1963, pp. 289-312.

    Google Scholar 

  44. Benkeser, R.A., Hazdra, J.J., and Burrous, M.L., J. Am. Chem. Soc., 1959, vol. 81, no. 20, pp. 5374-5379.

    Google Scholar 

  45. Alexander, E.A. and Mudrak, A., J. Am. Chem. Soc., 1950, vol. 72, no. 7, pp. 3194-3198.

    Google Scholar 

  46. Alexander, E.A. and Mudrak, A., J. Am. Chem. Soc., 1951, vol. 73, no. 1, pp. 59-62.

    Google Scholar 

  47. Eliel, E.L., Wilen, S.H., and Mander, L.N., Stereochemistry of Organic Compounds, New York: Wiley, 1994.

    Google Scholar 

  48. Atta-ul-Rahman and Zahir Shah, Stereoselective Synthesis in Organic Chemistry, New York: Springer, 1993.

    Google Scholar 

  49. Atkinson, R.S., Stereoselective Synthesis, Chichester: Wiley, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gevorkyan, A.A., Arakelyan, A.S., Petrosyan, K.A. et al. Types, Symbolism of Representation of Steric Structure, and Conformations of Ion Pairs. Stereochemical Version of the Generalized Rule of Elimination. Russian Journal of General Chemistry 71, 729–735 (2001). https://doi.org/10.1023/A:1012305301604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012305301604

Keywords

Navigation