Skip to main content

REVIEW: The Rest-Frame Instant Form of Metric Gravity

Abstract

In a special class of globally hyperbolic, topologically trivial, asymptotically flat at spatial infinity spacetimes selected by the requirement of absence of supertranslations (compatible with Christodoulou-Klainermann spacetimes) it is possible to define the rest-frame instant form of ADM canonical gravity by using Dirac's strategy of adding ten extra variables at spatial infinity and ten extra first class constraints implying the gauge nature of these variables. The final canonical Hamiltonian is the weak ADM energy and a discussion of the Hamiltonian gauge transformations generated by the eight first class ADM constraints is given. When there is matter and the Newton constant is switched off, one recovers the description of the matter on the Wigner hyperplanes of the rest-frame instant form of dynamics in Minkowski spacetime.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Dirac, P. A. M. (1950). Can. J. Math. 2, 129. “Lectures on Quantum Mechanics,” Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, N.Y., 1964).

    Google Scholar 

  2. 2.

    Anderson, J. L., and Bergmann, P. G. (1951). Phys. Rev. 83, 1018. Bergmann, P. G., and Goldberg, J. (1955). Phys. Rev. 98, 531.

    Google Scholar 

  3. 3.

    Lusanna, L. (1990a). Phys. Rep. 185, 1. b) Riv. Nuovo Cimento 14, n. 3, 1 (1991). c) J. Math. Phys. 31, 428 and 2126 (1990d). Int. J. Mod. Phys. A 8, 4193 (1993). e) Comtemp. Math. 132, 531 (1992). f) Chaichian, M., Martinez, D. Louis, and Lusanna, L. Ann. Phys. (N.Y.) 232, 40 (1994).

    Google Scholar 

  4. 4.

    Henneaux, M. (1985). Phys. Rep. 126, 1. Henneaux, M., and Teitelboim, C. “Quantization of Gauge Systems” (Princeton University Press, Princeton, 1992). 144 See Ref. [92] for the application of these methods to find the center of mass of a configuration of the Klein-Gordon field after the preliminary work of Ref. [93]. 145 One can take 1jsys c /(1Ksys /Msys) as gauge internal 3–center of mass.

    Google Scholar 

  5. 5.

    Lusanna, L. “Towards a Unified Description of the Four Interactions in Terms of Dirac-Bergmann Observables,” invited contribution to the book “Quantum Field Theory: A 20th Century Profile,” of the Indian National Science Academy, ed. A. N. Mitra, foreward F. J. Dyson (Hindustan Book Agency, New Delhi, 2000) (HEP-TH /9907081). “Tetrad Gravity and Dirac's Observables,” talk given at the Conf. “Constraint Dynamics and Quantum Gravity 99,” Villasimius 1999 (GR-QC /9912091). “The Rest-Frame Instant Form of Dynamics and Dirac's Observables,” talk given at the Int. Workshop “Physical Variables in Gauge Theories,” Dubna 1999.

    Google Scholar 

  6. 6.

    Lusanna, L. “Solving Gauss' Laws and Searching Dirac Observables for the Four Interactions,” talk at the “Second Conf. on Constrained Dynamics and Quantum Gravity,” S. Margherita Ligure 1996, eds. DeAlfaro, V., Nelson, J. E. Bandelloni, G., Blasi, A., Cavaglià, M., and Filippov, A. T. Nucl. Phys. (Proc. Suppl.) B 57, 13 (1997) (HEP-TH /9702114). “Unified Description and Canonical Reduction to Dirac's Observables of the Four Interactions,” talk at the Int. Workshop “New non Perturbative Methods and Quantization on the Light Cone', Les Houches School 1997, eds. P. Grang´e, H. C. Pauli, A. Neveu, S. Pinsky, and A. Werner (Springer, Berlin, 1998) (HEP-TH /9705154). “The Pseudoclassical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Gauge,” talk at the Euroconference QCD97, ed. S. Narison, Montpellier 1997, Nucl. Phys. (Proc. Suppl.) B 64, 306 (1998).

  7. 7.

    Møller, C. (1949). Ann. Inst. H. Poincaré 11, 251. “The Theory of Relativity” (Oxford Univ. Press, Oxford, 1957).

    Google Scholar 

  8. 8.

    Dirac, P. A. M. (1949). Rev. Mod. Phys. 21, 392.

    Google Scholar 

  9. 9.

    Lusanna, L. (1997). Int. J. Mod. Phys. A 12, 645.

    Google Scholar 

  10. 10.

    Shanmugadhasan, S. (1973). J. Math. Phys. 14, 677. Lusanna, L. (1993). Int. J. Mod. Phys. A 8, 4193.

    Google Scholar 

  11. 11.

    Lichnerowicz, A. (1975). C. R. Acad. Sci. Paris, Ser. A, 280, 523. Tulczyiew, W. Symposia Math. 14, 247 (1974). Woodhouse, N. “Geometric Quantization” (Clarendon, Oxford, 1980). ` Sniatycki, J. Ann. Inst. H. Poincar´e, 20, 365. (1984). Marmo, G., Mukunda, N., and Samuel, J., Riv. Nuovo Cimento 6, 1 (1983). Bergvelt, M. J., and DeKerf, E. A. Physica, 139A, 101 and 125 (1986). Dubrovin, B. A., Giordano, M., Marmo, G., and Simoni, A. (1993). Int. J. Mod. Phys. 8, 4055.

    Google Scholar 

  12. 12.

    Gotay, M. J., Nester, J. M., and Hinds, G. (1978). J. Math. Phys. 19, 2388. Gotay, M. J., and Nester, J. M. Ann. Inst. H. Poincar´e, H. A 30, 129 (1979) and A 32, 1 (1980). Gotay, M. J., and ` Sniatycki, J. Commun. Math. Phys. 82, 377 (1981). Gotay, M. J. Proc. Am. Math. Soc. 84, 111 (1982); J. Math. Phys. 27, 2051 (1986).

    Google Scholar 

  13. 13.

    Schouten, J. A., and Kulk, W. V. D. “Pfaff's Problem and Its Generalizations” (Clarendon, Oxford, 1949).

    Google Scholar 

  14. 14.

    Lie, S., “Theorie der Transformation Gruppe,” Vol. II (Teubner, B. G. Leipzig, 1890). Forsyth, A. R. “Theory of Differential Equations,” Vol. V, Ch. IX (Dover, New York, 1959). Eisenhart, L. P. “Continuous Groups of Tranformations” (Dover, New York, 1961). Fulp, R. O., and Marlin, J. A. Pacific J. Math. 67, 373 (1976); Rep. Math. Phys. 18, 295 (1980).

    Google Scholar 

  15. 15.

    Arnowitt, R., Deser, S., and Misner, C. W. (1960). Phys. Rev. 117, 1595. In “Gravitation: An Introduction to Current Research,” ed. L. Witten (Wiley, New York, 1962).

  16. 16.

    Isham, C. J., and Kuchar, K. (1984). Ann. Phys. (N.Y.) 164, 288 and 316. Kuchar, K. Found. Phys. 16, 193 (1986).

    Google Scholar 

  17. 17.

    Regge, T., and Teitelboim, C. (1974). Ann. Phys. (N.Y.) 88, 286.

    Google Scholar 

  18. 18.

    Beig, R., and Murchadha, Ó. (1987). Ann. Phys. (N.Y.) 174, 463.

    Google Scholar 

  19. 19.

    Ashtekar, A., and Hansen, R. O. (1978). J. Math. Phys. 19, 1542. Ashtekar, A. “Asymptotic Structure of the Gravitational Field at Spatial Infinity,” in “General Relativity and Gravitation,” Vol. 2, ed. Held, A. (Plenum, New York, 1980); in “General Relativity and Gravitation” (GRG10), eds. Bertotti, B., de Felice, F., and Pascolini, A. (Reidel, Dordrecht, 1984).

    Google Scholar 

  20. 20.

    McCarthy, P. J. (1972). J. Math. Phys. 13, 1837; Proc. Roy. Soc. London A 330, 517 (1972) and A 333, 317 (1973); Phys. Rev. Lett. 29, 817 (1972). McCarthy, P. J., and Crampin, M. Proc. Roy. Soc. London A 335, 301 (1973).

    Google Scholar 

  21. 21.

    Winicour, J. “Angular Momentum in General Relativity,” in “General Relativity and Gravitation,” vol. 2, ed. Held, A. (Plenum, New York, 1980).

    Google Scholar 

  22. 22.

    Wald, R. M. “General Relativity” (Chicago Univ. Press, Chicago, 1984).

    Google Scholar 

  23. 23.

    Christodoulou, D., and Klainerman, S. “The Global Nonlinear Stability of the Minkowski Space” (Princeton, Princeton, 1993).

  24. 24.

    Dirac, P. A. M. (1951). Canad. J. Math. 3, 1.

    Google Scholar 

  25. 25.

    Choquet-Bruhat, Y., Fischer, A., and Marsden, J. E. “Maximal Hypersurfaces and Positivity of Mass,” LXVII E. Fermi Summer School of Physics “Isolated Gravitating Systems in General Relativity,” ed. Ehlers, J. (North-Holland, Amsterdam, 1979).

    Google Scholar 

  26. 26.

    Frauendiener, J. (1991). Class. Quantum Grav. 8, 1881.

    Google Scholar 

  27. 27.

    Sen, A. (1981). J. Math. Phys. 22, 1781; Phys. Lett. 119B, 89 (1982).

  28. 28.

    Witten, E. (1981). Commun. Math. Phys. 80, 381.

    Google Scholar 

  29. 29.

    Bergmann, P. G. (1961). Rev. Mod. Phys. 33, 510.

    Google Scholar 

  30. 30.

    Friedrich, H. (1998). “Einstein's equation and geometric asymptotics,” talk at GR15, Pune, GRQC/9804009; J. Geom. Phys. 24, 83.

    Google Scholar 

  31. 31.

    Friedrich, H. “On the Conformal Structure of Gravitational Fields in the Large,” in “Highlights in Gravitation and Cosmology,” eds. Iyer, B. R., Kembhavi, A., Narlikar, J. V., and Vishveshwara, C. V. (Cambridge Univ. Press, Cambridge, 1988); “Asymptotic Structure of Space-Time,” in “Recent Advances in General Relativity,” eds. Janis, A. I., and Porter, J. R. (Birkh¨auser, Basel, 1992). “Calculating Asymptotic Quantities near Space-like and Null Infinity from Cauchy Data” (GR-QC /9911103).

    Google Scholar 

  32. 32.

    Frauendiener, J. (2000). “Conformal Infinity,” Online Journal Living Reviews in Relativity 3, n. 4 (http://www.livingreviews.org/Articles/Volume3/2000–4frauendiener).

  33. 33.

    Bicák, J. “Radiative Spacetimes: Exact Approaches,” in “Relativistic Gravitation and Gravitational Radiation,” Les Houches 1995, eds. Marck, J. A., and Lasota, J. P. (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  34. 34.

    Bergmann, P. G., and Komar, A. (1972). Int. J. Theor. Phys. 5, 15.

    Google Scholar 

  35. 35.

    Lichnerowicz, A. (1944). J. Math. Pure Appl. 23, 37. Faures-Bruhat, Y. C. R. Acad. Sci. Paris 226, 1071 (1948); J. Rat. Mech. Anal. 5, 951 (1956); “The Cauchy Problem” in “Gravitation: An Introduction to Current Research,” ed. Witten, L. (Wiley, New York, 1962).

    Google Scholar 

  36. 36.

    York, J. W., Jr. (1971). Phys. Rev. Lett. 26, 1656; 28, 1082 (1972). J. Math. Phys. 13, 125 (1972); 14, 456 (1972). Ann. Inst. H. Poincar´e, XXI, 318 (1974). O'Murchadha, N., and York, J. W., Jr. J. Math. Phys. 14, 1551 (1972). Phys. Rev. D 10, 428 (1974).

    Google Scholar 

  37. 37.

    York, J. W., Jr. “Kinematics and Dynamics of General Relativity,” in “Sources of Gravitational Radiation,” Battelle-Seattle Workshop 1978, ed. Smarr, L. L. (Cambridge Univ. Press, Cambridge, 1979). Qadir, A., and Wheeler, J. A. “York's Cosmic Time Versus Proper Time,” in “From SU(3) to Gravity,” Y. Ne'eman's festschrift, eds. Gotsma, E., and Tauber, G. (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  38. 38.

    Ciufolini, I., and Wheeler, J. A. “Gravitation and Inertia” (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  39. 39.

    Isenberg, J., and Marsden, J. E. (1984). J. Geom. Phys. 1, 85.

    Google Scholar 

  40. 40.

    Lusanna, L., and Russo, S. Tetrad Gravity: I) A New Formulation, Firenze Univ. preprint (GRQC/9807072).

  41. 41.

    Lusanna, L., and Russo, S. Tetrad Gravity: II) Dirac's Observables, Firenze Univ. preprint (GRQC/9807073).

  42. 42.

    De Pietri, R., and Lusanna, L. “Tetrad Gravity III: Asymptotic Poincaré Charges, the Physical Hamiltonian and Void Spacetimes,” Firenze Univ. preprint 1999 (GR-QC/9909025).

  43. 43.

    Einstein, A., letter of January 3rd 1916 in ‘Albert Einstein and Michele Besso Correspondence 1903-1955,’ ed. Speziali, P. (Hermann, Paris, 1972); ‘Relativity and the Problem of Space’ in ‘Relativity: The Special and General Theory’ (Crown, New York, 1961). Jammer, M. ‘Concepts of Space’ (Harvard Univ. Press, Cambridge, 1954).

    Google Scholar 

  44. 44.

    Stachel, J. “The Meaning of General Covariance,” in “Philosophical Problems of the Internal and External Worlds,” Essays in the Philosophy of A. Grünbaum, eds. Earman, J., Janis, A. I., Massey, G. J., and Rescher, N. (Pittsburgh Univ. Press, Pittsburgh, 1993). “How Einstein Discovered General Relativity: A Historical Tale with Some Contemporary Morals,” in Proc. GR11, ed. MacCallum, M. A. H. (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  45. 45.

    Rovelli, C. (1991). Class. Quantum Grav. 3, 297 and 317.

    Google Scholar 

  46. 46.

    Komar, A. (1958). Phys. Rev. 111, 1182. Bergmann, P. G., and Komar, A. Phys. Rev. Lett. 4, 432 (1960).

    Google Scholar 

  47. 47.

    Misner, C. W., Thorne, K. S., and Wheeler, J. A. “Gravitation” (Freeman, New York, 1973).

    Google Scholar 

  48. 48.

    Weinberg, S. “Gravitation and Cosmology” (J. Wiley, New York, 1972).

    Google Scholar 

  49. 49.

    Isenberg, J., and Nester, J. “Canonical Gravity,” in “General Relativity and Gravitation,” vol. 1, ed. Held, A. (Plenum, New York, 1980).

    Google Scholar 

  50. 50.

    Isham, C. J. “Canonical Quantum Gravity and the Problem of Time,” in “Integrable Systems, Quantum Groups and Quantum Field Theories,” eds. Ibort, L. A., and Rodriguez, M. A. Salamanca 1993 (Kluwer, London, 1993); “Conceptual and Geometrical Problems in Quantum Gravity,” in “Recent Aspects of Quantum Fields,” Schladming 1991, eds. Mitter, H., and Gausterer, H. (Springer, Berlin, 1991); “Prima Facie Questions in Quantum Gravity” and “Canonical Quantum Gravity and the Question of Time,” in “Canonical Gravity: From Classical to Quantum,” eds. Ehlers, J., and Friedrich, H. (Springer, Berlin, 1994).

    Google Scholar 

  51. 51.

    Choquet-Bruhat, Y., and York, J. W., Jr. “The Cauchy Problem,” in “General Relativity and Gravitation,” vol. 1, ed. Held, A. (Plenum, New York, 1980).

    Google Scholar 

  52. 52.

    Rendall, A. D. “Local and Global Existence Theorems for the Einstein Equations,” Online Journal Living Reviews in Relativity 1, n. 4 (1998) and 3, n. 1 (2000), http://www.livingreviews.org/Articles/Volume3/2000–1rendall (GR-QC /0001008).

  53. 53.

    Friedrich, H., and Rendall, A. D. “The Cauchy Problem for Einstein Equations,” in “Einstein's Field Equations and their Physical Interpretation,” ed. Schmidt, B. G. (Springer, Berlin, 2000).

    Google Scholar 

  54. 54.

    Teitelboim, C. “The Hamiltonian Structure of Space-Time,” in “General Relativity and Gravitation,” ed. Held, A. Vol. I (Plenum, New York, 1980).

    Google Scholar 

  55. 55.

    Kuchar, K. (1976). J. Math. Phys. 17, 777, 792, 801; 18, 1589 (1977).

    Google Scholar 

  56. 56.

    Lee, J., and Wald, R. M. (1990). J. Math. Phys. 31, 725.

    Google Scholar 

  57. 57.

    Pons, J. M., and Shepley, L. (1995). Class. Quantum Grav. 12, 1771. (GR-QC /9508052); Pons, J. M., Salisbury, D. C., and Shepley, L. C. Phys. Rev. D 55, 658 (1997) (GR-QC /9612037).

    Google Scholar 

  58. 58.

    Sugano, R., Kagraoka, Y., and Kimura, T. (1992). Int. J. Mod. Phys. A 7, 61.

    Google Scholar 

  59. 59.

    Lusanna, L. (1995). Int. J. Mod. Phys. A 10, 3531 and 3675.

    Google Scholar 

  60. 60.

    Alba, D., and Lusanna, L. (1998). Int. J. Mod. Phys. A 13, 3275 (HEP-TH /9705156).

    Google Scholar 

  61. 61.

    Beig, R. “Asymptotic Structure of Isolated Systems,” in “Highlights in Gravitation and Cosmology,” eds. Iyer, B. R., Kembhavi, A., Narlikar, J. V., and Vishveshwara, C. V. (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  62. 62.

    Penrose, R. (1963). Phys. Rev. Lett. 10, 66; Proc. Roy. Soc. London A 284, 159 (1965).

    Google Scholar 

  63. 63.

    Geroch, R., and Horowitz, G. T. (1978). Phys. Rev. Lett. 40, 203. Geroch, R., and Xanthopoulos, B. C. J. Math. Phys. 19, 714 (1978).

    Google Scholar 

  64. 64.

    Geroch, R. (1972). J. Math. Phys. 13, 956; in “Asymptotic Structure of Space-Time,” eds. Esposito, P., and Witten, L. (Plenum, New York, 1976).

    Google Scholar 

  65. 65.

    Sommers, P. (1978). J. Math. Phys. 19, 549.

    Google Scholar 

  66. 66.

    Ashtekar, A., and Romano, J. D. (1992). Class. Quantum Grav. 9, 1069.

    Google Scholar 

  67. 67.

    Cruściel, P. (1990). J. Math. Phys. 30, 2094.

    Google Scholar 

  68. 68.

    Bergmann, P. G. (1961). Phys. Rev. 124, 274. Ashtekar, A. Found. Phys. 15, 419 (1985).

    Google Scholar 

  69. 69.

    Winicour, J. “Radiative Space-Times: Physical Properties and Parameters,” in “Highlights in Gravitation and Cosmology,” eds. Iyer, B. R., Kembhavi, A., Narlikar, J. V., and Vishveshwara, C. V. (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  70. 70.

    Beig, R., and Schmidt, B. G. (1982). Commun. Math. Phys. 87, 65. Beig, R. Proc. Roy. Soc. London A 391, 295 (1984).

    Google Scholar 

  71. 71.

    Bondi, H. (1960). Nature 186, 535. Bondi, H., van der Burg, M. G., and Metzner, A. W. K., Proc. Roy. Soc. London A 269, 21 (1962). Sachs, R. K. Proc. Roy. Soc. London A 264, 309 (1962) and A 270, 103 (1962); Phys. Rev. 128, 2851 (1962).

    Google Scholar 

  72. 72.

    Ashtekar, A., and Magnon, A. (1984). J. Math. Phys. 25, 2682.

    Google Scholar 

  73. 73.

    Andersson, L. (1987). J. Geom. Phys. 4, 289.

    Google Scholar 

  74. 74.

    O'Murchadha, N. (1986). J. Math. Phys. 27, 2111.

    Google Scholar 

  75. 75.

    Christodoulou, D., and Ó Murchadha, N. (1981). Commun. Math. Phys. 80, 271.

    Google Scholar 

  76. 76.

    Tafel, J., and Trautman, A. (1983). J. Math. Phys. 24, 1087. Schlieder, S., Nuovo Cimento A 63, 137 (1981). Bramson, B. D., Proc. Roy. Soc. London A 341, 463 (1975).

    Google Scholar 

  77. 77.

    Moncrief, V. (1979). J. Math. Phys. 20, 579. Cantor, M., Bull. Am. Math. Soc. 5, 235 (1981).

    Google Scholar 

  78. 78.

    Hawking, S. W., and Horowitz, G. T. (1996). Class. Quantum Grav. 13, 1487.

    Google Scholar 

  79. 79.

    Chruściel, P. T. (1988). Commun. Math. Phys. 120, 233.

    Google Scholar 

  80. 80.

    Thiemann, T. (1995). Class. Quantum Grav. 12, 181.

    Google Scholar 

  81. 81.

    Solov'ev, V. O. (1985). Theor. Math. Phys. 65, 1240; Sov. J. Partl. Nucl. 19, 482 (1988).

    Google Scholar 

  82. 82.

    Marolf, D. (1996). Class. Quantum Grav. 13, 1871.

    Google Scholar 

  83. 83.

    Ashtekar, A. “New Perspectives in Canonical Gravity” (Bibliopolis, Napoli, 1988). Kastrup, H. A., and Thiemann, T., Nucl. Phys. B 399, 211 (1993) and B 425, 665 (1994). Kuchar, K. Phys. Rev. D 50, 3961 (1994). Balachandran, A. P., Chandar, L., and Momen, A. “Edge states in canonical gravity,” Syracuse Univ. preprint SU-4240–610 1995 (GR-QC /9506006).

    Google Scholar 

  84. 84.

    Barbour, J. “General Relativity as a Perfectly Machian Theory,” in “Mach's Principle: From Newton's Bucket to Quantum Gravity,” eds. Barbour, J. B., and Pfister, H. Einstein's Studies in n. 6 (Birkhäuser, Boston, 1995).

    Google Scholar 

  85. 85.

    Giulini, D., Kiefer, C., and Zeh, H. D. (1995). “Symmetries, Superselection Rules and Decoherence,” Freiburg Univ. preprint THEP-94 /30 1994 (GR-QC /9410029). Hartle, J., Laflamme, R., and Marolf, D., Phys. Rev. D 51, 7007 (1995).

  86. 86.

    Giulini, D. (1995). Helv. Phys. Acta 68, 86.

    Google Scholar 

  87. 87.

    De Witt, B. S. (1967). Phys. Rev. 160, 1113.

    Google Scholar 

  88. 88.

    De Witt, B. S. (1967). Phys. Rev. 162, 1195; “The Dynamical Theory of Groups and Fields” (Gordon and Breach, New York, 1967) and in “Relativity, Groups and Topology,” Les Houches 1963, eds. De Witt, C., and De Witt, B. S. (Gordon and Breach, London, 1964); “The Spacetime Approach to Quantum Field Theory,” in “Relativity, Groups and Topology II,” Les Houches 1983, eds. De Witt, B. S., and Stora, R. (North-Holland, Amsterdam, 1984). De Witt, B. S., and Brehme, R. W. Ann. Phys. (N.Y.) 9, 220 (1960).

    Google Scholar 

  89. 89.

    Schoen, R., and Yau, S. T. (1979). Phys. Rev. Lett. 43, 1457; Commun. Math. Phys. 65, 45 (1979) and 79, 231 (1980). Witten, E. Commun. Math. Phys. 80, 381 (1981). Brill, D. M., and Jang, P. S. “The Positive Mass Conjecture,” in “General Relativity and Gravitation,” Vol. 1, ed. Held, A. (Plenum, New York, 1980). Choquet-Bruhat, Y. “Positive Energy Theorems,” in “Relativity, Groups and Topology II,” Les Houches XL 1983, eds. DeWitt, B. S., and Stora, R. (North-Holland, Amsterdam, 1984). Horowitz, G. T. “The Positive Energy Theorem and its Extensions,” in “Asymptotic Behaviour of Mass and Spacetime Geometry,” ed. Flaherty, F. J., Lecture Notes Phys. 202 (Springer, Berlin, 1984). Perry, M. J. “The Positive Mass Theories and Black Holes,” in “Asymptotic Behaviour of Mass and Spacetime Geometry,” ed. Flaherty, F. J., Lecture Notes Phys. 202 (Springer, Berlin, 1984).

    Google Scholar 

  90. 90.

    Crater, H., and Lusanna, L. (2000). “The Rest-Frame Darwin Potential from the Lienard-Wiechert Solution in the Radiation Gauge,” Ann. Phys. (NY) 289, 87. 2000 (HEP-TH /0001046).

    Google Scholar 

  91. 91.

    Alba, D., Lusanna, L., and Pauri, M. “Dynamical Body Frames, Orientation-Shape Variables and Canonical Spin Bases for the Nonrelativistic N-Body Problem,” Firenze Univ. preprint 2000 (HEP-TH /0011014); “Center of Mass, Rotational Kinematics and Multipolar Expansions for the Relativistic and Non-Relativistic N-Body Problems in the Rest-Frame Instant Form,” in preparation.

  92. 92.

    Lusanna, L., and Materassi, M. (2000). “The Canonical Decomposition in Collective and Relative Variables of a Klein-Gordon Field in the Rest-Frame Wigner-Covariant Instant Form,” Int. J. Mod. Phys. A 15, 2821 (HEP-TH /9904202).

    Google Scholar 

  93. 93.

    Longhi, G., and Materassi, M. (1999). “A Canonical Realization of the BMS Algebra,” J. Math. Phys. 40, 480 (HEP-TH /9803128); “Collective and Relative Variables for a Classical Klein-Gordon Field,” Int. J. Mod. Phys. A 14, 3397 (1999) (HEP-TH /9890024).

    Google Scholar 

  94. 94.

    Landau, L., and Lifschitz, E. “The Classical Theory of Fields” (Addison-Wesley, Cambridge, 1951).

    Google Scholar 

  95. 95.

    Brill, D. M., and Jang, P. S. “The Positive Mass Conjecture,” in “General Relativity and Gravitation,” Vol. 1, ed. Held, A. (Plenum, New York, 1980).

    Google Scholar 

  96. 96.

    Stephani, H. “General Relativity” (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  97. 97.

    Faddeev, L. D. (1982). Sov. Phys. Usp. 25, 130.

    Google Scholar 

  98. 98.

    Trautman, A. In “Gravitation, an Introduction to Current Research,” ed. Witten, L. (Wiley, New York, 1962).

    Google Scholar 

  99. 99.

    Pauri, M., and Prosperi, M. (1975). J. Math. Phys. 16, 1503.

    Google Scholar 

  100. 100.

    Soffel, M. H. “Relativity in Astrometry, Celestial Mechanics and Geodesy” (Springer, Berlin, 1989).

    Google Scholar 

  101. 101.

    Jantzen, R. T., Carini, P., and Bini, D. (1992). Ann. Phys. (N.Y.) 215, 1.

    Google Scholar 

  102. 102.

    Kuchar, K. “Canonical Quantum Gravity” in “General Relativity and Gravitation” Int. Conf. GR13, Cordoba (Argentina) 1992, eds. Gleiser, R. J., Kozameh, C. N., and Moreschi, O. M. (IOP, Bristol, 1993).

    Google Scholar 

  103. 103.

    Beig, R. “The Classical Theory of Canonical General Relativity,” in “Canonical Gravity: From Classical to Quantum,” Bad Honnef 1993, eds. Ehlers, J., and Friedrich, H., Lecture Notes Phys. 434 (Springer, Berlin, 1994).

    Google Scholar 

  104. 104.

    Kuchar, K. (1971). Phys. Rev. D 4, 955; J. Math. Phys. 11, 3322 (1970); 13, 768 (1972).

    Google Scholar 

  105. 105.

    Misner, C. W. (1969). Phys. Rev. Lett. 22, 1071; Phys. Rev. 186, 1319 and 1328 (1969).

    Google Scholar 

  106. 106.

    Kuchar, K. “Time and Interpretations of Quantum Gravity,” in Proc. 4th Canadian Conf. on “General Relativity and Relativistic Astrophysics,” eds. Kunstatter, G., Vincent, D., and Williams, J. (World Scientific, Singapore, 1992).

    Google Scholar 

  107. 107.

    Kuchar, K. “Canonical Methods of Quantization,” in “Quantum Gravity 2,” eds. Isham, C. J., Penrose, R., and Sciana, D. W. (Clarendon Press, Oxford, 1981).

    Google Scholar 

  108. 108.

    Baierlein, R. F., Sharp, D. H., and Wheeler, J. A. (1962). Phys. Rev. 126, 1864.

    Google Scholar 

  109. 109.

    Parentani, R. (1997). “The Notions of Time and Evolution in Quantum Cosmology,” GRQC/9710130.

  110. 110.

    Kiefer, C. (1996). “The Semiclassical Approximation to Quantum Gravity” in “Canonical Gravity–From Classical to Quantum,” ed. Ehlers, J. (Springer, Berlin, 1994). “Semiclassical Gravity and the Problem of Time,” in Proc. Cornelius Lanczos Int. Centernary Conf., eds. Chu, M., Flemmons, R., Brown, D., and Ellison, D. (SIAM, 1994). Nucl. Phys. B 475, 339.

    Google Scholar 

  111. 111.

    Choquet-Bruhat, Y., Isenberg, J., and York, J. W., Jr. (1999). “Einstein Constraints on Asymptotically Euclidean Manifolds,” GR-QC/9906095. Anderson, A., Choquet-Bruhat, Y., and York, J., Jr., “Einstein's Equations and Equivalent Dynamical Systems,” GR-QC /9907099 and “Curvature-Based Hyperbolic Systems for General Relativity,” talk at the 8th M. Grossmann Meeting (Jerusalem, Israel, 1997), GR-QC /9802027. Anderson, A., and York, J. W., Jr., Phys. Rev. Letters 81, 1154 and 4384 (1999). York, J. W., Jr., Phys. Rev. Letters 82, 1350.

  112. 112.

    Bartnik, R., and Fodor, G. (1993). Phys. Rev. D 48, 3596.

    Google Scholar 

  113. 113.

    Giulini, D. (1999). J. Math. Phys. 40, 2470.

    Google Scholar 

  114. 114.

    Lusanna, L. (1981). Nuovo Cimento, 65B, 135.

    Google Scholar 

  115. 115.

    Longhi, G., and Lusanna, L. (1986). Phys. Rev. D 34, 3707.

    Google Scholar 

  116. 116.

    Isenberg, J. (1987). Phys. Rev. Lett. 59, 2389.

    Google Scholar 

  117. 117.

    Isenberg, J. (1995). Class. Quantum Grav. 12, 2249.

    Google Scholar 

  118. 118.

    Isenberg, J., and Moncrief, V. (1996). Class. Quantum Grav. 13, 1819.

    Google Scholar 

  119. 119.

    Bartnik, R. (1988). Commun. Math. Phys. 117, 615. D. Brill, in Proc. Third Marcel Grossman Meeting, ed. Ning, H. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  120. 120.

    Dirac, P. A. M. (1949). Rev. Mod. Phys. 21, 392.

    Google Scholar 

  121. 121.

    Gaida, R. P., Kluchkovsky, Yu. B., and Tretyak, V. I. (1983). Theor. Math. Phys. 55, 372; in “Constraint's Theory and Relativistic Dynamics,” eds. Longhi, G., and Lusanna, L. (World Scientific, Singapore, 1987).

    Google Scholar 

  122. 122.

    Moncrief, V. (1965). J. Math. Phys. 16, 1556. Arms, J., Fischer, A., and Marsden, J. E., C.R. Acad. Sci. Paris A 281, 517 (1975). Arms, J. Acta Phys. Pol. B 17, 499 (1986) and Contep. Math. 81, 99 (1988). Arms, J. M., Gotay, M. J., and Jennings, G., Adv. Math. 79, 43 (1990).

    Google Scholar 

  123. 123.

    Wheeler, J. A. “Geometrodynamics and the Issue of the Final State,” in “Relativity, Groups and Topology,” Les Houches 1963, eds. De Witt, B. S., and De Witt, C. (Gordon and Breach, London, 1964). “Superspace and the Nature of Quantum Geometrodynamics,” in Battelle Rencontres 1967, eds. De Witt, C., and Wheeler, J. A. (Gordon and Breach, New York, 1968).

    Google Scholar 

  124. 124.

    Fischer, A. E. (1983). “The Theory of Superspace,” in “Relativity,” eds. Carmeli, M., Fickler, L., and Witten, L. (Plenum, New York, 1970); Gen. Rel. Grav. 15, 1191 (1983); J. Math. Phys. 27, 718 (1986). Rainer, M. “The Moduli Space of Local Homogeneous 3–Geomeetries,” talk at the Pacific Conf. on Gravitation and Cosmology, Seoul 1996.

    Google Scholar 

  125. 125.

    Swift, S. T. (1992). J. Math. Phys. 33, 3723; 34, 3825 and 3841 (1993).

    Google Scholar 

  126. 126.

    Arms, J. M., Marsden, J. E., and Moncrief, V. (1981). Commun. Math. Phys. 78, 455.

    Google Scholar 

  127. 127.

    Marzke, R. F., and Wheeler, J. A., in “Gravitation and Relativity,” eds. Chiu, H. Y., and Hoffman, W. F. (Benjamin, New York, 1964).

    Google Scholar 

  128. 128.

    Ehlers, J., Pirani, F. A. E., and Schild, A. “The Geometry of Free-Fall and Light Propagation” in “General Relativity, Papers in Honor of J. L. Synge,” ed. O'Raifeartaigh, L. (Oxford Univ. Press, London, 1972).

    Google Scholar 

  129. 129.

    Brown, J. D., and Kuchar, K. (1995). Phys. Rev. D 51, 5600.

    Google Scholar 

  130. 130.

    De Witt, B. S., in “Gravitation,” ed. Witten, L. (Wiley, New York, 1962).

    Google Scholar 

  131. 131.

    Fischer, A. E., and Marsden, J. E. (1980). “The Initial Value Problem and the Dynamical Formulation of General Relativity,” in “General Relativity. An Einstein Centenary Survey,” eds. Hawking, S. W., and Israel, W. (Cambridge Univ. Press, Cambridge, 1979). Fischer, A. E., Marsden, J. E., and Moncrief, V. Ann. Inst. H. Poincar´e A 33, 147. Arms, J. M., Marsden, J. E., and Moncrief, V., Ann. Phys. (N.Y.) 144, 81 (1982).

    Google Scholar 

  132. 132.

    Moncrief, V. (1975). J. Math. Phys. 16, 493 and 1556; 17, 1893 (1976). Phys. Rev. D 18, 983 (1978).

    Google Scholar 

  133. 133.

    Havas, P. (1987). Gen. Rel. Grav. 19, 435. Anderson, R., Vetharaniam, I., and Stedman, G. E. Phys. Rep. 295, 93 (1998).

    Google Scholar 

  134. 134.

    Hájíchek, P. (1995). J. Math. Phys. 36, 4612; Class. Quantum Grav. 13, 1353 (1996); Nucl. Phys. (Proc. Suppl.) B 57, 115 (1997). H´aj´/chek, P., Higuchi, A., and Tolar, J., J. Math. Phys. 36, 4639 (1995). Isham, C. J., and H´aj´/chek, P., J. Math. Phys. 37, 3505 and 3522 (1996).

    Google Scholar 

  135. 135.

    Torre, C. G. (1993). Phys. Rev. D 48, R2373.

    Google Scholar 

  136. 136.

    Butterfield, J., and Isham, C. J. “Spacetime and the Philosophical Challenge of Quantum Gravity,” Imperial College preprint (GR-QC/9903072).

  137. 137.

    Feng, S. S., and Huang, C. G. (1997). Int. J. Theor. Phys. 36, 1179.

    Google Scholar 

  138. 138.

    Gáhéniau, J., and Debever, R. in ‘Jubilee of Relativity Theory', eds. Mercier, A., and Kervaire, M., Bern 1955, Helvetica Physica Acta Supplementum IV (Birkhäuser, Basel, 1956).

    Google Scholar 

  139. 139.

    Ellis, G. F. R., and Matravers, D. R. (1995). Gen. Rel. Grav. 27, 777.

    Google Scholar 

  140. 140.

    Zalaletdinov, R., Tavakol, R., and Ellis, G. F. R. (1996). Gen. Rel. Grav. 28, 1251.

    Google Scholar 

  141. 141.

    Rovelli, C. (1990). Phys. Rev. D 42, 2638, D 43, 442 (1991) and D 44, 1339 (1991).

    Google Scholar 

  142. 142.

    Lawrie, I. D., and Epp, R. J. (1996). Phys. Rev. D 53, 7336.

    Google Scholar 

  143. 143.

    Rovelli, C. (1993). Class. Quantum Grav. 10, 1549 and 1567. Connes, A., and Rovelli, C. Class. Quantum Grav. 11, 2899 (1994).

    Google Scholar 

  144. 144.

    Brown, J. D., and Kuchar, K. (1995). Phys. Rev. D 51, 5600.

    Google Scholar 

  145. 145.

    Barbour, J. B. (1994). Class. Quantum Grav. 11, 2853 and 2875.

    Google Scholar 

  146. 146.

    Clemence, G. M. (1957). Rev. Mod. Phys. 29, 2. Kovalevski, J., Mueller, I. I., and Kolaczek, B. “Reference Frames in Astronomy and Geophysics,” pp. 355 and 367 (Kluwer, Dordrecht, 1989).

    Google Scholar 

  147. 147.

    DePietri, R., Lusanna, L., and Pauri, M. (1995). Class. Quantum Grav. 12, 219.

    Google Scholar 

  148. 148.

    DePietri, R., Lusanna, L., and Pauri, M. (1995). Class. Quantum Grav. 12, 255.

    Google Scholar 

  149. 149.

    Will, C. M. “Theory and Experiment in Gravitational Physics,” rev. ed. (Cambridge Univ. Press, Cambridge, 1993). Turyshev, S. G., “Relativistic Navigation: A Theoretical Foundation,” NASA /JPL No 96–013 (GR-QC/9606063).

    Google Scholar 

  150. 150.

    Damour, T. “Selected Themes in Relativistic Gravity,” in “Relativistic Gravitation and Gravitational Radiation,” Les Houches 1995, eds. Marck, J. A., and Lasota, J. P. (Cambrige Univ. Press, Cambridge, 1997).

    Google Scholar 

  151. 151.

    Blanchet, L., and Damour, T. (1989). Ann. Inst. H. Poincaré 50, 377. Blanchet, L., Damour, T., and Sch¨afer, G., Mon. Not. R. Astr. Soc. 242, 289 (1990). Damour, T., Soffel, M., and Xu, C. Phys. Rev. D 43, 3273 (1991); D 45, 1017 (1992); D 47, 3124 (1993); D 49, 618 (1994).

    Google Scholar 

  152. 152.

    Longhi, G., Lusanna, L., and Pons, J. M. (1989). J. Math. Phys. 30, 1893.

    Google Scholar 

  153. 153.

    Lusanna, L. “Multitemporal Relativistic Particle Mechanics: A Gauge Theory Without Gauge-Fixings,” in Proc. IV M. Grossmann Meeting, ed. Ruffini, R., (Elsevier, Amsterdam, 1986).

    Google Scholar 

  154. 154.

    Unruh, W., and Wald, R. (1989). Phys. Rev. D 40, 2598.

    Google Scholar 

  155. 155.

    Hartle, J. B. (1996). Class. Quantum Grav. 13, 361.

    Google Scholar 

  156. 156.

    Hájíchek, P. (1991). Phys. Rev. D 44, 1337. W. Unruh, in “Gravitation: A Banff Summer Institute,” eds. Mann, R., and Wesson, P. (World Scientific, Singapore, 1991).

    Google Scholar 

  157. 157.

    Lusanna, L., and Nowak-Szczepaniak, D. (2000). “The Rest-Frame Instant Form of Relativistic Perfect Fluids with Equation of State p = p(n//s) and of Non-Dissipative Elastic Materials,” Int. J. Mod. Phys. A15, 4943. (HEP-TH/0003095).

    Google Scholar 

  158. 158.

    Møller, C. (1961). Ann. Phys. (N.Y.) 12, 118; in Proc. Int. School of Physics E. Fermi, Course XX (Academic Press, New York, 1962).

    Google Scholar 

  159. 159.

    Pirani, F. A. E. “Gauss' Theorem and Gravitational Energy,” in “Les Theories Relativistes de la Gravitation,” Proc. Int. Conf. at Royaumont 1959, eds. Lichnerowicz, A., and Tonnelat, M. A. (CNRS, Paris, 1962).

    Google Scholar 

  160. 160.

    Goldberg, J. N. (1988). Phys. Rev. D 37, 2116.

    Google Scholar 

  161. 161.

    Rosen, N. (1940). Phys. Rev. 57, 147; Ann. Phys. (N.Y.) 22, 1 (1963); Found. Phys. 15, 998 (1986); in “From SU(3) to Gravity,” Y. Ne'eman's festschrift, eds. Gotsman, E., and Tauber, G. (Cambridge Univ. Press, Cambridge, 1985); in “Topological Properties and Global Structure of Space-Time,” eds. Bergmann, P. G., and de Sabbata, V. (Plenum, New York, 1986).

    Google Scholar 

  162. 162.

    Ashtekar, A., and Horowitz, G. T. (1984). J. Math. Phys. 25, 1473.

    Google Scholar 

  163. 163.

    Sen, A. (1982). Int. J. Theor. Phys. 21, 1. Sommers, P., J. Math. Phys. 21, 2567 (1980).

    Google Scholar 

  164. 164.

    Ashtekar, A., “New Perspectives in Canonical Gravity” (Bibliopolis, Napoli, 1988).

    Google Scholar 

  165. 165.

    Penrose, R., and Rindler, W., “Spinors and Space-Time” vol. 1 and 2 (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  166. 166.

    Sparling, G. A. J. (1999). “Differential Ideals and the Einstein Vacuum Equations,” Pittsburgh Univ. preprint 1983; “Twistors, Spinors and the Einstein Vacuum Equations,” Pittsburgh Univ. preprint 1984; “Twistor Theory and the Characterization of Fefferman Conformal Structures,” Pittsburgh Univ. preprint 1984; “A Development of the Theory of Classical Supergravity,” Pittsburgh, Univ. preprint 1988; Gen. Rel. Grav. 31 837.

  167. 167.

    Mason, L. J., and Frauendiener, J. “The Sparling 3–form, Ashtekar Variables and Quasi-Local Mass,” in “Twistors in Mathematical Physics,” eds. Bailey, T., and Baston, R. (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  168. 168.

    Nester, J. M. (1981). Phys. Lett. 83A, 241. Israel, W., and Nester, J. M., Phys. Lett. 85A, 259 (1981). Nester, J. M., in “Asymptotic Behaviour of Mass and Spacetime Geometry,” ed. Flaherty, F. J., Lecture Notes Phys. 202 (Springer, Berlin, 1984). Nester, J. M., Phys. Lett. 139A, 112 (1989). Nester, J. M., Class. Quantum Grav. 11, 983 (1994).

    Google Scholar 

  169. 169.

    Hawking, S. W., and Ellis, G. F. R. “The Large Scale Structure of Spacetime” (Cambridge Univ. Press, Cambridge, 1973).

    Google Scholar 

  170. 170.

    Nester, J. M. (1991). Mod. Phys. Lett. A 6, 2655. Phys. Lett. 203A, 5 (1995); Gen. Rel. Grav. 27, 115 (1995).

    Google Scholar 

  171. 171.

    Penrose, R. (1982). Proc. Roy. Soc. London A 381, 53. Mason, L. J., Class. Quantum Grav. 6, L7 (1989).

    Google Scholar 

  172. 172.

    Frauendiener, J. (1989). Class. Quantum Grav. 6, L237.

    Google Scholar 

  173. 173.

    Einstein, A. (1916). Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 42, 1111.

    Google Scholar 

  174. 174.

    Goldberg, J. “Invariant Transformations, Conservation Laws and Energy-Momentum,” in ‘General Relativity and Gravitation', ed. Held, A. (Plenum, New York, 1980).

    Google Scholar 

  175. 175.

    Dubois-Violette, M., and Madore, J. (1987). Commun. Math. Phys. 108, 213.

    Google Scholar 

  176. 176.

    Frauendiener, J. (1990). Gen. Rel. Grav. 22, 1423.

    Google Scholar 

  177. 177.

    Choquet-Bruhat, Y., and Christodoulou, D. (1981). Acta Math. 146, 129. Reula, O., J. Math. Phys. 23, 810 (1982). Reula, O., and Todd, K. J. Math. Phys. 25, 1004 (1984). Parker, T., and Taub, C. H. Commun. Math. Phys. 84, 223 (1982). Parker, T. Commun. Math. Phys. 100, 471 (1985). Biz´on, P., and Malec, E. Class. Quantum Grav. 3, L123 (1986).

    Google Scholar 

  178. 178.

    Horowitz, G. T., and Tod, P. (1982). Commun. Math. Phys. 85, 429.

    Google Scholar 

  179. 179.

    Bergqvist, G. (1994). Class. Quantum Grav. 11, 2545; Phys. Rev. D 48, 628 (1993).

    Google Scholar 

  180. 180.

    Horowitz, G. T., and Perry, M. J. (1982). Phys. Rev. Lett. 48, 371.

    Google Scholar 

  181. 181.

    a) Nester, J. M. (1988). Class. Quantum Grav. 5, 1003. Cheng, W. H., Chern, D. C., and Nester, J. M., Phys. Rev. D 38, 2656 (1988). b) Nester, J. M. J. Math. Phys. 30, 624 (1980) and 33, 910 (1992). c) Nester, J. M., Int. J. Mod. Phys. A 4, 1755 (1989). Nester, J. M. Class. Quantum Grav. 8, L19 (1991).

    Google Scholar 

  182. 182.

    Dimakis, A., and Müller-Hoissen, F. (1989). Phys. Lett. 142A, 73.

    Google Scholar 

  183. 183.

    Bailey, I., and Israel, W. (1980). Ann. Phys. (N.Y.) 130, 188.

    Google Scholar 

  184. 184.

    Kovalevvsky, J., Mueller, I. I., and Kolaczek, B., “Reference Frames in Astronomy and Geophysics” (Kluwer, Dordrecht, 1989).

    Google Scholar 

  185. 185.

    Lusanna, L., “The N-body Problem in Tetrad Gravity: A First Step towards the Unified Description of the Four Interactions,” talk given at the XI Int. Conf. “Problems of Quantum Field Theory,” Dubna 1998, and at the III W. Fairbank Meeting and I ICRA Network Workshop, “The Lense-Thirring Effect,” Roma-Pescara 1998 (GR-QC /9810036).

  186. 186.

    Ashtekar, A. (1986). Phys. Rev. Lett. 57, 2244; “New Perspectives in Canonical Gravity” (Bibliopolis, Naples, 1988); “Lectures on Non-Perturbative Canonical Gravity” (World Scientific, Singapore, 1991); “Quantum Mechanics of Riemannian Geometry,” http://vishnu.nirvana.phys.psu.edu/riem qm/riem qm.html. Rovelli, C., and Smolin, L., Nucl. Phys. B 331, 80 (1990); B 442, 593 (1995). Rovelli, C., “Loop Quantum Gravity,” Living Reviews in Relativity http://www.livingreviews.org/Articles/Volume1 /1998–1rovelli.

    Google Scholar 

  187. 187.

    Kuchar, K. (1986). Phys. Rev. D 34, 3031 and 3044.

    Google Scholar 

  188. 188.

    Lusanna, L. (1992). “Classical Observables of Gauge Theories from the Multitemporal Approach,” in “Mathematical Aspects of Classical Field Theory,” Seattle 191, Contemporary Mathematics 132, 531 (1992).

    Google Scholar 

  189. 189.

    Torre, C. G., and Varadarajan, M. (1999). Class. Quantum Grav. 16, 2651 (1999); Phys. Rev. D 58, 064007 (1998).

    Google Scholar 

  190. 190.

    Hanson, A. J., and Regge, T. (1974). Ann. Phys. (N.Y.) 87, 498. Hanson, A. J., Regge, T., and Teitelboim, C. “Constrained Hamiltonian Systems,” in Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche, Fisiche e loro Applicazioni, n. 22 (Accademia Nazionale dei Lincei, Roma, 1975).

    Google Scholar 

  191. 191.

    Dixon, W. G. (1967). J. Math. Phys. 8, 1591. “Extended Objects in General Relativity: Their Description and Motion,” in “Isolated Gravitating Systems in General Relativity,” ed. J. Ehlers (North-Holland, Amsterdam, 1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lusanna, L. REVIEW: The Rest-Frame Instant Form of Metric Gravity. General Relativity and Gravitation 33, 1579–1696 (2001). https://doi.org/10.1023/A:1012297028267

Download citation

  • General Relativity
  • Metric Gravity
  • Constraint Theory