Skip to main content
Log in

Induced Absorption of C60 and a Water-Soluble C60-Derivative in SiO2 Sol-Gel Matrices

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Porous sol-gel glasses, either impregnated with pure C60 or doped with a methanofullerene derivative, have been studied and induced absorption or “reverse saturable absorption” (RSA) has been observed in both types of solid materials. The samples impregnated by pure C60 mainly contain well-dispersed fullerene molecules. Unlike crystalline films of C60, their absorption dynamics can be well described by a 5-level model, developed for non-interacting C60-molecules in solutions. Methanofullerene samples, on the other hand, show signs of micellar aggregation and therefore RSA dynamics that are influenced by solid state effects. We observe an important decrease of transmission at high fluences for both kinds of samples, a shortened singlet-state lifetime to that observed in solution, but nonetheless, a triplet yield, that cannot be considered as negligible. In the case of pure C60 in a sol-gel matrix, we can explain the faster de-excitation dynamics, relative to behavior in solution, mainly by the absence of stabilizing aromatic solvents and also by the interaction of the amorphous environment with the molecules. Concerning the methanofullerene samples, the acceleration of the de-excitation dynamics can be principally attributed to solid-state effects due to the micellar aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bourdon and S. Paolacci-Riera, Optique et Photonique 4, 22 (1998).

    Google Scholar 

  2. L.W. Tutt and A. Kost, Nature 356, 225 (1992).

    Google Scholar 

  3. J.W. Perry, K. Mansour, I.-Y. S. Lee, X.-L. Wu, P.V. Bedworth, C.-T. Chen, D. Ng, S.R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Science 273, 1533 (1996).

    Google Scholar 

  4. D. Vincent and J. Cruickshank, Applied Optics 36(30), 7794 (1997).

    Google Scholar 

  5. K.M. Nashold and D. Powell Walter, J. Opt. Soc. Am. B 12(7), 1228 (1995).

    Google Scholar 

  6. M.P. Joshi, R. Mishra, H.S. Rawat, C. Mehendale, and K.C. Rustagi, Appl. Phys. Lett. 62(15), 1763 (1993).

    Google Scholar 

  7. D.G. McLean, R.L. Sutherland, M.C. Brant, D.M. Brandelik, P.A. Fleitz, and T. Pottenger, Optics Letters 18, 858 (1993).

    Google Scholar 

  8. F. Henari, J. Callaghan, H. Stiel, W. Blau, and D.J. Cardin, Chemical Physics Letters 199, 144 (1992).

    Google Scholar 

  9. B.L. Justus, Z.H. Kafafi, and A.L. Huston, Optics Letters 18, 1603 (1993).

    Google Scholar 

  10. S.R. Mishra, H.S. Rawat, M.P. Joshi, and S.C. Mehendale, Appl. Phys. A 63, 223 (1996).

    Google Scholar 

  11. Y. Sun, Q. Gong, S.-C. Yang, Y.H. Zou, L. Fei, and X. Zhou, Optics Communications 102, 205 (1993).

    Google Scholar 

  12. V.V. Golovlev, W.R. Garret, and C.H. Chen, J. Opt. Soc. Am. B 13, 2801 (1996).

    Google Scholar 

  13. A. Kost, L. Tutt, M.B. Klein, T.K. Dougherty, and W.E. Elias, Optics Letters 18, 334 (1993).

    Google Scholar 

  14. A. Kost, J. Jensen, M.B. Klein, J.C. Withers, R.O. Loutfy, M.B. Haeri, M.E. Ehritz, and T. Yadav, Proc. SPIE 2284, 208 (1994).

    Google Scholar 

  15. C. Li, L. Zhang, R. Wang, Y. Song, and Y. Wang, J. Opt. Soc. Am. B 11, 1356 (1994).

    Google Scholar 

  16. V. Klimov, L. Smilowitz, H. Wang, M. Grigorova, J.M. Robinson, A. Koskelo, B.R. Mattes, F. Wudl, and D.W. McBranch, Res. Chem. Intermed. 23(7), 587 (1997).

    Google Scholar 

  17. R.A. Cheville and N.J. Halas, Phys. Rev. B 45(8), 4548 (1992).

    Google Scholar 

  18. V.M. Farztdinov, Y.E. Lozovik, Y.A. Matveets, A.G. Stepanov, and Y.S. Letokhov, J. Phys. Chem. 98, 3290 (1994).

    Google Scholar 

  19. S.R. Flom, J. Bartoli, H.W. Sarkas, C.D. Merrit, and Z.H. Kafafi, Phys. Rev. B 51(17), 11376 (1994).

    Google Scholar 

  20. L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, M. Grigorova, B.J. Weyer, A. Koskelo, B.R. Mattes, H. Wang, and F. Wudl, Synthetic Metals 84, 931 (1997).

    Google Scholar 

  21. S. Couris, E. Koudoumas, A.A. Ruth, and S. Leach, J. Phys. B: At. Mol. Opt. Phys. 28, 4537 (1995).

    Google Scholar 

  22. J. Barroso, A. Costela, I. Garcia-Moreno, and J.L. Salz, J. Phys. Chem A 102, 2527 (1998).

    Google Scholar 

  23. M. Lee, O. Song, J. Seo, D. Kim, Y.D. Suh, S.M. Jin, and S.K. Kim, Chem. Phys. Letters 196(3), 4325 (1992).

    Google Scholar 

  24. S. Leach, M. Vervloet, A. Despres, E. Breheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, and D.R.M. Walton, Chemical Physics 160, 451 (1992).

    Google Scholar 

  25. J.W. Arbogast, A.P. Darmanyan, C.S. Foote, Y. Rubin, F.N. Diederich, M.M. Alvarez, S.J. Anz, and R.L. Whetten, J. Phys. Chem. 95, 11 (1991).

    Google Scholar 

  26. T.W. Ebbesen, K. Tanigaki, and S. Karoshima, Chem. Phys. Letters 181(6), 501 (1992).

    Google Scholar 

  27. J. Schell, D. Brinkmann, D. Ohlmann, B. Hönerlage, R. Lévy, M. Joucla, J.L. Rehspringer, J. Serughetti, and C. Bovier, J. Chem. Phys. 108, 8599 (1998).

    Google Scholar 

  28. D. Felder, D. Guillon, R. Lévy, A. Mathis, J.-F. Nicoud, J.-F. Nierengarten, J.-L. Rehspringer, and J. Schell, J. Mater. Chem. 10, 887 (2000).

    Google Scholar 

  29. O. Cintora-Gonzalez, C. Estournès, J.-L. Guille, J.-J. Grob, B. Hönerlage, J. Lemoigne, R. Lévy, T. Lutz, J.-C. Merle, D. Muller, M. Richard, J.-L. Rehspringer, J. Schell, and N. Viart, Analusis 28, 109 (2000).

    Google Scholar 

  30. R. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, J. Phys. Chem. 98, 3492 (1994).

    Google Scholar 

  31. J. Eastoe, E.R. Crooks, A. Beeby, and R.K. Heenan, Chemical Physics Letters 245, 571 (1995).

    Google Scholar 

  32. U. Jonas, F. Cardullo, P. Belik, F. Diederich, A. Gügel, E. Harth, A. Herrmann, L. Isaacs, K. Müllen, H. Ringsdorf, C. Thielgen, P. Uhlmann, A. Vasella, C.A.A. Waldraff, and M. Walter, Chem. Eur. J. 1, 243 (1995).

    Google Scholar 

  33. J. Catalán, New Journal of Chemistry 19, 1233 (1995).

    Google Scholar 

  34. C. Bingel, Chem. Ber. 126, 1957 (1993).

    Google Scholar 

  35. J.-F. Nierengarten, V. Gramlich, F. Cardullo, and F. Diederich, Angew. Chem. Int. Ed. Engl. 35, 2101 (1996).

    Google Scholar 

  36. X. Camps and A. Hirsch, J. Chem. Soc., Perkin Trans. 1, 1595 (1997).

    Google Scholar 

  37. J.-F. Nierengarten and J.-F. Nicoud, Tetrahedron Lett. 38, 7737 (1997).

    Google Scholar 

  38. V.D. Felder and J.-F. Nierengartin, private communication. Selected spectroscopic data for 1: dark red solid (mp > 250°C); UV/Vis (in aqueous 0.1 M NaOH): see Figure 1; UV/Vis (CH2Cl2): λ max (ε)=257 (95000), 324 (27500), 425 (3200), 488 (2200), 685 (130); 1H-NMR (CDCl3, 200 MHz): 1.35–1.73 (m, 40 H), 2.17 (t, J = 6 Hz, 8 H), 3.87 (t, J = 6 Hz, 8 H), 5.41 (s, 4 H), 6.39 (t, J = 2 Hz, 2 H), 6.58 (d, J = 2 Hz, 4 H); FAB-MS: 1635.7 (10%, [M + H]+, calcd for C109H71O16: 1635.5), 720.2 (100%, [C60]+, calcd for C60: 720.0).

  39. D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. 99, 13487 (1995).

    Google Scholar 

  40. D.M. Guldi, J. Phys. Chem. A 101, 3895 (1997).

    Google Scholar 

  41. D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. A 101, 1783 (1997).

    Google Scholar 

  42. J. Schell, D. Ohlmann, D. Brinkmann, R. Lévy, M. Joucla, J.L. Rehspringer, and B. Hönerlage, J. of Chem. Phys. 111, 5929 (1999).

    Google Scholar 

  43. B. Hönerlage, J. Schell, and R. Lévy, Nonlinear Optics 21, 189 (1999).

    Google Scholar 

  44. J.E. Riggs and Y.P. Sun, J. Phys. Chem. A 103, 485 (1999).

    Google Scholar 

  45. L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, A. Koskelo, M. Grigorova, B.R. Mattes, H.Wang, and F. Wudl, Optics Letters 21, 922 (1996).

    Google Scholar 

  46. Y. Song, G. Fang, Y. Wang, S. Liu, C. Li, L. Song, Y. Zhu, and Q. Hu, Physics Letters 74, 332 (1999).

    Google Scholar 

  47. M. Meneghetti, M. Zerbetto, R. Signorini, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, E. Menegazzo, and M. Guglielmi, Synthetic Metals 86, 2353 (1997).

    Google Scholar 

  48. R.J. Sension, C.M. Philips, A.Z. Szarka, W.J. Romanow, A.R. McGhie, J.P. McCauley, A.B. Smith, and R.M. Hochstrasser, J. Phys. Chem. 95, 6075 (1991).

    Google Scholar 

  49. L. Yang, R. Dorsinville, and R. Alfano, Chemical Physics Letters 226, 605 (1994).

    Google Scholar 

  50. S.H. Gallagher, R.S. Armstrong, P.A. Lay, and C.A. Reed, J. Phys. Chem. 99, 5817 (1995).

    Google Scholar 

  51. B. Ma, C.E. Bunker, R. Guduru, X.-F. Zhang, and Y.-P. Sun, J. Phys. Chem. A, 101, 5626 (1997).

    Google Scholar 

  52. N. Armaroli, F. Diederich, C.O. Dietrich-Buchecker, L. Flamigni, G. Marconi, J.-F. Nierengarten, and J.-P. Sauvage, Chem. Eur. J. 4, 406 (1998).

    Google Scholar 

  53. N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G. Marconi, and J.-F. Nierengarten, New Journal of Chemistry 23, 77 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, J., Felder, D., Nierengarten, JF. et al. Induced Absorption of C60 and a Water-Soluble C60-Derivative in SiO2 Sol-Gel Matrices. Journal of Sol-Gel Science and Technology 22, 225–236 (2001). https://doi.org/10.1023/A:1012295919019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012295919019

Navigation