Skip to main content
Log in

A Simple Method to Extract Essential Oils from Tissue Samples by Using Microwave Radiation

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A microwave protocol to extract lipophilic substances from tissue was modified to extract essential oils (EOs) from plant tissue and insect feculae. The material, in a solvent transparent to microwave radiation, is exposed for a short time to steam in a microwave oven. EO extracts are analyzed directly by GC or GC-MS when plant material is fresh and terpenes contained in glandular structures on leaf surfaces are readily released into the solvent. For dried material or insect feculae, mechanical means are utilized first to break up tissue; however, the complete procedure is carried out inside the same vial to reduce losses. Statistical analysis shows that the reproducibility of the modified method is high. Several samples can be run within an hour with this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AMMANN, A., HINZ, D.-C., ADDLEMAN, R.-S., WAI, C.-M., and WENCLAWIAK, B. 1999. Superheated water extraction, steam distillation and SFE of peppermint oil. J. Anal. Chem. 364:650–653.

    Google Scholar 

  • ANITESCU, G., DONEANU, C., and RADULESCU, V. 1997. Isolation of coriander oil: Comparison between steam distillation and supercritical CO2 extraction. Flavour Fragrance J. 12:173–176.

    Google Scholar 

  • CASABIANCA, H., GRAFF, J. B., FAUGIER, V., FLEIG, F., and GRENIER, C. 1998. Enantionmeric distribution studies of linalool and linalyl acetate. A powerful tool for authenticity control of essential oils. J. High Resolut. Chromatogr. 21:107–112.

    Google Scholar 

  • CLARK, J. L., HAMILTON, J. G. C., CHAPMAN, J. V., RHODES, M. J. C., and HALLAHAN, D. L. 1997. Analysis of monoterpenoids in glandular trichomes of the catmint Nepeta racemosa. Plant J. 11:1387–1393.

    Google Scholar 

  • COLEY, P. D. and KURSAR, T. A. 1996. Anti-herbivore defenses of young tropical leaves: Physiological constraints and ecological trade-offs, pp. 305–336, in S. S. Mulkey, R. L. Chazdon, and A. P. Smith (eds.). Tropical Forest Plant Ecophysiology. Chapman & Hall, New York.

    Google Scholar 

  • DAB10 (DEUTSCHES ARZNEIBUCH). 1991. Gehaltsbetimmung des ätherisches Oelen, Grundlfg., v.4.5.8., amtliche Ausgabe. Deutscher Apotheker Verlag, Stuttgart.

    Google Scholar 

  • EIKANI, M. H., GOODARZNIA, I., and MIRZA, M. 1999. Supercritical carbon dioxide extraction of cumin seeds. Flavour Frangance J. 14:29–31.

    Google Scholar 

  • FAHLEN, A., WELANDER, M., and WENNERSTEN, R. 1997. Effects of light-temperature regimes on plant growth and essential oil yield of selected aromatic plants. J. Sci. Food Agric. 73:111–119.

    Google Scholar 

  • GERSHENZON, J. 1994. The cost of plant chemical defense against herbivory: A biochemical perspective, pp. 105–173, in Elizabeth A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • GÓMEZ, N. E. 1997. The fecal shields of larvae of tortoise beetles (Cassidinae: Chrysomelidae): A role in chemical defense using plant-derived secondary metabolites. Dissertation. Naturwissenschaftsfakultät, Technische Universität Braunschweig, Braunschweig. 124 pp.

    Google Scholar 

  • GÓMEZ, N. E., WITTE, L., and HARTMANN, T. 1999. Chemical defense in larval tortoise beetles: Essential oil composition of fecal shields of Eurypedus nigrosignata and foliage of its host plant, Cordia curassavica. J. Chem Ecol. 25:1007–1027.

    Google Scholar 

  • LAENGER, R., MECHTLER, C., and JURENITSCH, J. 1997. Composition of the essential oils of commercial samples of Salvia officinalis L. and S. fruticosa Miller:Acomparison of oils obtained by extraction and steam distillation. Phytochem. Anal. 7:289–293.

    Google Scholar 

  • LANGENHEIM, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    Google Scholar 

  • LIS, B. M., BUCHBAUER, G., RIBISCH, K., and WENGER, M. T. 1998. Comparative antibacterial effects of novel Pelargonium essential oil and solvent extracts. Lett. Appl. Microbiol. 27:135–141.

    Google Scholar 

  • MUZIKA, R.-M., CAMPBELL, C. L., HANOVER, J. W., and SMITH, A. L. 1990. Comparison of techniques for extracting volatile compounds from conifer needles. J. Chem. Ecol. 16:2713–2722.

    Google Scholar 

  • PALLADO, P., TASSINATO, G., D'ALPAOS, M., and TRALDI, P. 1997. Gas chromatography/mass spectrometry in aroma chemistry: A comparison of essential oils and flavors extracted by classical and supercritical techniques. Rapid Commun. Mass Spectrom. 11:1335–1341.

    Google Scholar 

  • PARE, J. R. J. 1994. Microwave extraction of volatile oils. U.S. Patent No. 5,338,557.

  • PARE, J. R. J. 1995. Microwave-assisted extraction from materials containing organic matter. U.S. Patent No. 5,458,897.

  • ROSS, S. A. and ELSOHLY, M. A. 1996. The volatile oils composition of fresh and air-dried buds of Cannabis sativa. J. Nat. Prod. 59:49–51.

    Google Scholar 

  • RUBERTO, G., BIONDI, D., and RENDA, A. 1999. The composition of the volatile oil of Ferulago nodosa obtained by steam distillation and supercritical carbon dioxide extraction. Phytochemi. Anal. 10:241–246.

    Google Scholar 

  • SALGUEIRO, L. R., VILA, R., TOMàS, X., CAÑIGUERAL, S., PROENÇA DA CUNHA, A., and ADZET, T. 1997. Composition and variability of the essential oils of Thymus species from section Mastichina from Portugal. Biochem. Syst. Ecol. 25:659–672.

    Google Scholar 

  • SIMANDI, B., DEAK, A., RONYAI, E., YANXIANG, G., VERESS, T., LEMBERKOVICS, E., THEN, M., SASSKISS, A., and VAMOS-FALUSI, Z. 1999. Supercritical carbon dioxide extraction and fractionation of fennel oil. J. Agric. Food Chem. 47:1635–1640.

    Google Scholar 

  • SOKAL, R. R. and ROHLF, F. J. 1995. Biometry, 3rd ed. W. H. FREEMAN, New York, 887 pp.

    Google Scholar 

  • SOUTO BACHILLER, F., DE JESUS ECHEVERRIA, M., CARDENAS GONZALEZ, O. E., ACUNA RODRIGUEZ, M. F., MELENDEZ, P. A., and ROMERO RAMSEY, L. 1997. Terpenoid composition of Lippia dulcis. Phytochemistry 44:1077–1086.

    Google Scholar 

  • STASHENKO, E. E., PUERTAS, M. A., and COMBARIZA M. Y. 1996. Volatile secondary metabolites from Spilanthes americana obtained by simultaneous steam distillation-solvent extraction and supercritical fluid extraction. J. Chromatogr. 752:223–232.

    Google Scholar 

  • STEINBAUER, M. J., CLARKE, A. R., and MADDEN, J. L. 1998. Oviposition preference of a Eucalyptus herbivore and the importance of leaf age on interspecific host choice. Ecol. Entomol. 23:201–206.

    Google Scholar 

  • SYSTAT. 1992. SYSTAT for Windows: Statistics, Version 5 ed. SYSTAT, Inc., Evanston, Illinois, 750 pp.

    Google Scholar 

  • TUAN, D. Q. and ILANGANTILEKE, S. G. 1997. Liquid CO2 extraction of essential oil from star anise fruits (Illicium verum H.). J. Food Eng. 31:47–57.

    Google Scholar 

  • YEN, V. C. R. S. and MCGAW, D. 1996. Yield and chemical composition of essential oils of Grenadian nutmegs. Trop. Agric. 73:301–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, N.E., Witte, L. A Simple Method to Extract Essential Oils from Tissue Samples by Using Microwave Radiation. J Chem Ecol 27, 2351–2359 (2001). https://doi.org/10.1023/A:1012295307740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012295307740

Navigation