Skip to main content
Log in

Video color perimetry: impairment in glaucoma suspects

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose: To detect mild visual field impairment in asymptomatic glaucoma suspect patients. Methods: Color perception within the visual field was tested with customized color video perimetry. The key features of the system were stimuli color desaturation, low-level luminance and equiluminant gray background. Twenty patients with asymptomatic glaucoma were tested and compared with a group of age-matched control subjects. Results: Automated perimetry test findings differed significantly in the two groups, particularly for short-wavelength sensitivity (blue). The severity of color impairment correlated directly with intraocular pressure. Conclusion: Desaturated low-luminance video perimetry will reliably detect and quantify asymptomatic visual field defects. A previous work on multiple sclerosis has detected a mild long-wavelength (red) impairment in asymptomatic patients after an episode of optic neuritis, even in clinically unaffected fellow eyes. Our findings in glaucoma suspect patients indicate that a mild blue impairment could be the initial sign of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Budde WM, Junemann A, Korth M. Color axis evaluation of the Farnsworth Munsell 100-hue test in primary open-angle glaucoma and normal-pressure glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996; 234(suppl 1): S 180–6.

    Google Scholar 

  2. Sample PA, Weinreb RN. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci 1992; 33(6): 2068–71.

    Google Scholar 

  3. Stamper RL. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc. 1984; 82: 792–826.

    Google Scholar 

  4. Caprioli J. Early diagnosis of functional damage in patients with glaucoma. Arch Ophthalmol 1997; 115: 113–4.

    Google Scholar 

  5. Casson EJ, Johnson CA, Shapiro LR. Longitudinal comparison of temporal modulation perimetry with white and blue on yellow perimetry in ocular hypertension and early glaucoma. J Opt Soc Am A. 1993; 10(8): 1792–806.

    Google Scholar 

  6. De Long LA, Snepvangers CE, Van den Berg TJ, Langerhorst CT. Blue yellow perimetry in the detection of early glaucomatous damage. Doc Ophthalmol. 1990; 75(3–4): 303–14.

    Google Scholar 

  7. Demirel S, Johnson CA. Short wavelength automated perimetry (SWAP) in ophthalmic practice. J Am Optom Assoc 1996; 67(8): 415–6.

    Google Scholar 

  8. Devos M, Devos H, Spileers W, Arden GB. Quadrant analysis of peripheral colour contrast thresholds can be of significant value in the interpretation of minor visual field alterations in glaucoma suspects. Eye 1995; 9: 751–6.

    Google Scholar 

  9. Federovskaia LI. Effectiveness of mesopic color perimetry in early glaucoma. Vest Oftalmol 1988; 104(4): 12–4.

    Google Scholar 

  10. Felius J, Van den Berg TJ, Spekreijse H. Peripheral cone contrast sensitivity in glaucoma. Vis Res 1995; 35(12): 1791–7.

    Google Scholar 

  11. Felius J, de Long LA, Van den Berg TJ, Greve EL. Functional characteristics of blue on yellow perimetric thresholds in glaucoma. Invest Ophthalmology Vis Sci 1995; 36(8): 1665–74.

    Google Scholar 

  12. Gunduz K, Arden GB, Perry S, Weinstein GW, Hitchings RA. Color vision defects in ocular hypertension and glaucoma. Quantification with a computer-driven color television system. Arch Ophthalmol 1988; 106(7): 929–35.

    Google Scholar 

  13. Hart WM, Gordon MO. Color perimetry of glaucomatous visual field defects. Ophthalmology 1984; 91(4): 338–46.

    Google Scholar 

  14. Hart WMJr, Silverman SE, Trick GL, Nesher R, Gordon MO. Glaucomatous visual field damage. Luminance and color-contrast sensitivities. Invest Ophthalmol Vis Sci 1990; 31(2): 359–67.

    Google Scholar 

  15. Johnson CA, Adams AJ, Casson EJ, Brandr EJ. Blue on yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993; 111(5): 645–50.

    Google Scholar 

  16. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss as detected by blue on yellow and standard white on white automated perimetry. Arch Ophthalmol. 1993; 111(5): 651–6.

    Google Scholar 

  17. Lachenmayr BJ, Drance SM. Diffuse field loss and central visual function in glaucoma. Ger J Ophthalmol 1992; 1(2): 67–73.

    Google Scholar 

  18. Sample PA, Weinreb RN. Color perimetry for assessment of primary open angle glaucoma. lnvest Ophthalmol Vis Sci 1990; 31(9): 1869–75.

    Google Scholar 

  19. Wild JM, Moss ID, Whitaker D, O'Neil EC. The statistical interpretation of blue on yellow visual field loss. lnvest Ophthalmol Vis Sci 1995; 36(7): 1398–410.

    Google Scholar 

  20. Yamagami J, Koseki N, Aaraie M. Color vision deficit in normal-tension glaucoma eyes. Jpn J Ophthalmol 1995; 39(4): 384–9.

    Google Scholar 

  21. Yu TC, Falcao-Reis F, Spileers W, Arden GB. Peripheral color contrast. Invest Ophthalmol Vis Sci 1991; 32(10): 2779–89.

    Google Scholar 

  22. N. Accornero N, Rinalduzzi S, Capozza M, Millefiorini E, Filligoi GC, Capitanio L. Computerized color perimetry in multiple sclerosis. Multiple Sclerosis 1998; 4: 79–84.

    Google Scholar 

  23. Serra A, Zucca I, Tanda A, Piras V, Fossarello M. Blue-yellow perimetry in patients with ocular hypertone. Acta Ophthalmol Scand Suppl. 1998; 227: 24–7.

    Google Scholar 

  24. Accornero N, Capozza M, Rinalduzzi S, De Feo A, Filligoi GC, Capitanio L. Color perimetry with personal computer. Stud Health Technol Inform. 1997; 43(Pt A): 89–93.

    Google Scholar 

  25. Macaluso C, Lamedica A, Baratta G, Cordella M. Color discriminant along the cardinal chromatic axes with VECPs as an index of function of the parvocellular pathway. Correspondence of intersubject and axis variations to psychophysics. Electroencephology Clin Neurophysiol 1996; 100: 12–17.

    Google Scholar 

  26. Siegel S, Castellan NJ Jr. Nonparametric Statistics for the behavioral Science, ed McGraw-hill 1988; 132.

  27. Ryan T. Based on a routine by H D Knoble from: Handbook of Mathematical Functions USDC. 1996; Washington DC: National Bureau of Standards, 1964: 933 (formula 26.2.19.)

    Google Scholar 

  28. Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE.: S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci. 1989; 30(8): 1732–7.

    Google Scholar 

  29. Greenstein VC, Shapiro A, Hood DC, Zaidi Q. Chromatic and luminance sensitivity in diabetes and glaucoma. J Opt Soc Am A 1993; 10(8):1785–91.

    Google Scholar 

  30. Greenstein VC, Halevy D, Zaidi Q, Koenig KL, Ritch RH. Chromatic and luminance systems deficits in glaucoma. Vis Res. 1996; 36(4): 621–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accornero, N., Capozza, M., De Feo, A. et al. Video color perimetry: impairment in glaucoma suspects. Doc Ophthalmol 103, 81–90 (2001). https://doi.org/10.1023/A:1012291323927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012291323927

Navigation