Journal of Fusion Energy

, Volume 19, Issue 1, pp 93–98 | Cite as

Attraction and Repulsion of Nucleons: Sources of Stellar Energy

  • O. Manuel
  • C. Bolon
  • A. Katragada
  • M. Insall


The potential energy of a nuclide is enhanced by about 10 MeV per nucleon from the repulsion between like nucleons, and diminished by about 20 MeV per nucleon from the attraction between unlike nucleons. Nuclear stability results mostly from the interplay of these opposing forces, plus Coulomb repulsion of positive charges. Whereas fusion may be the primary mechanism by which first generation stars produce energy, repulsion between like nucleons may cause neutron emission from the collapsed core (neutron star) produced in a terminal supernova explosion and initiate luminosity in second generation stars that accrete on such objects. As noted earlier [1], the scarcity of solar neutrinos, the enrichment of light isotopes in the solar wind, and the presence of abundant short-lived nuclides and interlinked chemical and isotopic heterogeneities in the early solar system might also be explained if the Sun formed in this manner.

Nucleon interactions fusion neutron emission solar energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Manuel (2000). In Origin of Elements in the Solar System:Implications of Post-1957 Observation (Kluwer Academic/Plenum Publishers, New York, NY) Proceedings of the ACS Symposium organized by Glenn T. Seaborg and Oliver K. Manuel, pp. 589-643. See web page at Scholar
  2. 2.
    W. D. Harkins (1917). J. Am. Chem. Soc., 39, 856-879.Google Scholar
  3. 3.
    H. H. Payne (1926). “Stellar atmospheres,” Harvard Observatory Monograph, no. 1 (Harvard University, Cambridge, MA) 215 pp.Google Scholar
  4. 4.
    H. N. Russell (1929). Ap. J., 70, 11-82.Google Scholar
  5. 5.
    Fred Hoyle (1994). Home is where the wind blows. (University Science Books, Mill Valley, CA) pp. 152-154.Google Scholar
  6. 6.
    Edward Teller (1987). Better a shield than a sword. (Macmillian, New York, NY) pp. 257.Google Scholar
  7. 7.
    The Lunar Sample Preliminary Examination Team (1969). Science, 165, 1211-1227.Google Scholar
  8. 8.
    F. Begemann (1980). Rep. Prog. Phys., 43, 1309-1356.Google Scholar
  9. 9.
    J. H. Reynolds (1960). Phys. Rev. Lett., 4, 8-10.Google Scholar
  10. 10.
    J. H. Reynolds (1960). Phys. Rev. Lett., 4, 351-354.Google Scholar
  11. 11.
    D. D. Clayton (1975). Ap. J., 199, 765-769.Google Scholar
  12. 12.
    A. G. W. Cameron and J. W. Truran (1977). Icarus, 30, 447-461.Google Scholar
  13. 13.
    O. K. Manuel and D. D. Sabu (1975). Trans. Missouri Acad. Sci., 9, 104-122; Science 195, 208-209, (1977).Google Scholar
  14. 14.
    O. K. Manuel and G. Hwaung (1983). Meteoritics, 18, 209-222.Google Scholar
  15. 15.
    O. Manuel, C. Bolon, M. Zhong, and P. Jangam (2001). Abstract 1041, Lunar Planetary Science Conference XXXII, LPI Contribution No. 1080, ISSN No. 0161-5297.Google Scholar
  16. 16.
    J. K. Tuli (2000). Nuclear Wallet Cards, 6th Ed. (Upton, NY: National Nuclear Data Center, Brookhaven National Lab) pp. 74.Google Scholar
  17. 17.
    O. Manuel, C. Bolon, M. Zhong, and P. Jangam (2000). “The Sun's origin, composition and source of energy,” Progress report to FCR, Inc.,om/report to fcr/ report to fcr1.htm (December 25, 2000).Google Scholar
  18. 18.
    O. Manuel, C. Bolon, and M. Zhong (2001). J. Radioanal. Nucl. Chem. (in press).Google Scholar
  19. 19.
    E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle (1957). Rev. Mod. Phys., 29, 547-650.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • O. Manuel
    • 1
  • C. Bolon
    • 2
  • A. Katragada
    • 2
  • M. Insall
    • 2
  1. 1.University of MissouriRollaUSA
  2. 2.University of MissouriRollaUSA

Personalised recommendations