Skip to main content
Log in

Systemically Induced Plant Volatiles Emitted at the Time of “Danger”

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AGELOPOULOS, N. G. and KELLER, M. A. 1994. Plant-natural enemy association in tritrophic system, Cotesia rubecula-Pieris rapae (Brassicaceae Cruciferae). III: Collection and identification of plant and frass volatiles. J. Chem. Ecol. 20:1955–1967.

    Google Scholar 

  • AGELOPOULOS, N. G., HOOPER, A. M., MANIAR, S. P., PICKETT, J. A., and WADHAMS, L. J. 1999. A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. J. Chem. Ecol. 25:1411–1425.

    Google Scholar 

  • AGRAWAL, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 279:1201–1202.

    Google Scholar 

  • ALBORN, H. T., RöSE, U. S. R., and MCAUSLANE, H. J. 1996. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera spp. larvae. J. Chem. Ecol. 22:919–932.

    Google Scholar 

  • BALDWIN, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95:8113–8118.

    Google Scholar 

  • BLAAKMEER, A., GEERVLIET, J. B. F., VAN LOON, J. J. A., POSTHUMUS, M. A., VAN BEEK, T. A., and DEGROOT, A. E. 1994. Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: Consequences for in-flight host location by Cotesia parasitoids. Entomol. Exp. Appl. 73:175–182.

    Google Scholar 

  • BOUWMEESTER, H. J., VERSTAPPEN, F. W. A., POSTHUMUS, M. A., and DICKE, M. 1999. Spider mite-induced (3S )-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121:173–180.

    Google Scholar 

  • BRODEUR, J. and GEERVLIET, J. B. F. 1992. Host species affecting the performance of the larval parasitoid Cotesia glomerata and Cotesia rubecula (Hymenoptera: Braconidae). I. Preference for host developmental stage of Pieris (Lepidoptera: Pieridae). Med. Fac. Landb. Univ. Gent. 57/2B:543–545.

    Google Scholar 

  • DICKE, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 43:465–472.

    Google Scholar 

  • DICKE, M. 1999. Evolution of induced indirect defense of plants, pp. 62–88, in R. Tollrian and C. D. Harvell (eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • DICKE, M. and SABELIS, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.

    Google Scholar 

  • DICKE, M. and VET, L. E. M. 1999. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores Between Plants and Predators. Blackwell Science.

  • DICKE, M., SABELIS, M. W., TAKABAYASHI, J., BRUIN, J., and POSTHUMUS, M. A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Google Scholar 

  • DICKE, M., GOLS, R., LUDEKING, D., and POSTHUMUS, M. A. 1998. Jasmonate and herbivory differentially induce carnivore-attracting plant volatiles. J. Chem. Ecol. 25:1907–1922.

    Google Scholar 

  • DU, Y., POPPY, G. M., POWELL, W., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid. Aphidius ervi. J. Chem. Ecol. 24:1355–1367.

    Google Scholar 

  • EDWARDS, P. J. and WRATTEN, S. D. 1987. Ecological significance of wound-induced changes in plant chemistry, pp. 213–219, in V. Labeyrie, G. Fabres, and D. Lachaise (eds.). Insects-Plants. Dr. W. Junk Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • GEERVLIET, J. B. F., POSTHUMUS, M. A., VET, L. E. M., and DICKE, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.

    Google Scholar 

  • GU, H. and DORN, S. 2000. Genetic variation in behavioural response to herbivore infested plants in the parasitic wasp Cotesia glomerata. J. Insect Behav. 13:141–157.

    Google Scholar 

  • GUERRIERI, E., POPPY, G. M., POWELL, W., TREMBLAY, E., and PENNACCHIO, F. 1999. Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 25:1247–1261.

    Google Scholar 

  • HEATH, R. R. and MANUKIAN, A. 1994. An automated system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593–608.

    Google Scholar 

  • HERN, A. and DORN, S. 2001. Induced emissions of apple fruit volatiles by the codling moth: Changing patterns with different time periods after infestation and different larval instars. Phytochemistry 57:409–416.

    Google Scholar 

  • KARBAN, R. and BALDWIN, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., and TURLINGS, T. C. J. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836–11840.

    Google Scholar 

  • LOUGHRIN, J. H., POTTER, D. A., HAMILTON KEMP, T. R., and BYERS, M. E. 1997. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. Phytochemistry 45:919–923.

    Google Scholar 

  • MALECK, K. and DIETRICH, R. A. 1999. Defense on multiple fronts: How do plants cope with diverse enemies? Trends Plant Sci. 4:215–219.

    Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1994. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20:2229–2247.

    Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1995. β-glucosidase: An elicitor of herbivore induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92:2036–2040.

    Google Scholar 

  • MCCLOUD, E. S. and BALDWIN, I. T. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435.

    Google Scholar 

  • MEINERS, T. and HILKER, M. 1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthoglaeruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93.

    Google Scholar 

  • MEINERS, T. and HILKER, M. 2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26:221–232.

    Google Scholar 

  • PARé, P. W. and TUMLINSON, J. H. 1996. Plant volatile signals in response to herbivore feeding. Fla. Entomol. 79:93–103.

    Google Scholar 

  • PARé, P. W. and TUMLINSON, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.

    Google Scholar 

  • PIEL, J., DONATH, J., BANDEMER, K., and BOLAND, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: Induced and constitutive emission of volatiles. Angew. Chem. Int. Ed. 37:2478–2481.

    Google Scholar 

  • POTTING, R. P. J., VET, L. E. M., and DICKE, M. 1995. Host microhabitat location by stem-borer parasitoid Cotesia flavipes: The role of herbivore volatiles and locally and systemically induced plant volatiles. J. Chem. Ecol. 21:525–539.

    Google Scholar 

  • RöSE, U. S. R., MANUKIAN, A., HEATH, R. R., and TUMLINSON, J. H. 1996. Volatile semiochemicals released from undamaged cotton leaves: A systematic response of living plants to caterpillar damage. Plant Physiol. 111:487–495.

    Google Scholar 

  • RöSE, U. S. R., LEWIS, W. J., and TUMLINSON, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319.

    Google Scholar 

  • SOKAL, R. R. and ROHLF, F. J. 1981. Biometry. W. H. Freeman and Co, New York.

    Google Scholar 

  • SOUISSI, R., NENON, J. P., and LE RU, B. 1998. Olfactory responses of parasitoid Apoanagyrus lopezi to odor of plants, mealybugs, and plant-mealybug complexes. J. Chem. Ecol. 24:37–48.

    Google Scholar 

  • STEINBERG, S., DICKE, M., VET, L. E. M., and WANNINGEN, R. 1992. Response of the braconid Cotesia (=Apanteles) glomerata to volatile infochemicals: Effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63:163–175.

    Google Scholar 

  • STEINBERG, S., DICKE, M., and VET, L. E. M. 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata. J. Chem. Ecol. 19:47–60.

    Google Scholar 

  • THALER, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.

    Google Scholar 

  • TURLINGS, T. C. J. and TUMLINSON, J. H. 1992. Systemic releases of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. USA 89:8399–8402.

    Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., and LEWIS, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., HEATH, R. R., PROVEAUX, A. T., and DOOLITTLE, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattiacci, L., Rocca, B.A., Scascighini, N. et al. Systemically Induced Plant Volatiles Emitted at the Time of “Danger”. J Chem Ecol 27, 2233–2252 (2001). https://doi.org/10.1023/A:1012278804105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012278804105

Navigation