Skip to main content
Log in

LBGK Simulations of Turing Patterns in CIMA Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A lattice Bhatnagar–Gross–Krook (LBGK) model for reaction-diffusion systems is presented. This model provides a mesoscopic approach to the dynamics of spatially-distributed reacting systems. Pure diffusion phenomena are computed and the results are agreement with the theoretical predictions. This method is also applied to formation of Turing patterns in chloride-iodide-malonic acid (CIMA) reactive model. We get hexagonal structures and stripes which are agreement with other numerical results and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Turing, A. M. (1952). The chemical basis of morphogenesis. Philos.Trans.Roy.Soc.London Ser.B 237, 37.

    Google Scholar 

  2. De Kepper, P., Castets, V., and Dulos, E. (1991). Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49, 161–169.

    Google Scholar 

  3. Ouyang, Q., and Swinney, H. L. (1991). Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612.

    Google Scholar 

  4. Lengyel, I., and Epstein, I. R. (1991). Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system. Science 251, 650–652.

    Google Scholar 

  5. Jensen, O., Pannbacker, V. O., and Dewel, G., et al. (1990). Subcritical transitions to Turing structures. Phys.Lett.A 179, 91–96.

    Google Scholar 

  6. Rudovics, B., Barillot, E., and Davies, P. W. (1999). Experimental studies and quantitative modeling of Turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction. J.Chem.Phys.A 103, 1790–1800.

    Google Scholar 

  7. Markus, M., and Hess, B. (1990). Isotropic cellular automaton for modelling excitable media. Nature 347, 56–58.

    Google Scholar 

  8. Gerhardt, M., Schuster, H., and Tyson, J. (1990). A cellular automaton model of excitable media including curvature and dispersion. Science 247, 1563–1566.

    Google Scholar 

  9. Schepers, H. E., and Markus, M. (1992). Two types of performance of an isotropic cellular automaton: stationary (Turing) patterns and spiral waves. Physica A 188, 337–343.

    Google Scholar 

  10. Weimar, J. R., and Boon, J. P. (1994). New class of cellular automata for reaction-diffusion systems applied to the CIMA reaction. In Lawniczak, L., and Kapral, R. (eds.), Lattice Gas Automata and Pattern Formation, Waterloo, Ontario, Canada, Fields Institute.

    Google Scholar 

  11. Boon, J. P., Dab, D., and Kapral, R. (1996). Lattice gas automata for reactive systems. Phys.Rep. 237, 55–147.

    Google Scholar 

  12. Benzi, R., Succi, S., and Vergassola, M. (1992). The lattice Boltzmann equation: Theroy and applications. Phys.Rep. 222(3), 145–197.

    Google Scholar 

  13. Chen, H., Chen, S., and Matthaeus, W. (1992). Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method. Phys.Rev.A 45, 5339–5342.

    Google Scholar 

  14. Qian, Y. H., d'Humières, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. Europhys.Lett. 17, 479–484.

    Google Scholar 

  15. Qian, Y. H., Succi, S., and Orszag, S. A. (1995). Recent advances in lattice Boltzmann computing. Ann.Rev.Comp.Phys. 3, 195–242.

    Google Scholar 

  16. Chen, S., and Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Ann.Rev.Fluid Mech. 30, 329–364.

    Google Scholar 

  17. Dawson, S. P., Chen, S., and Doolen, G. D. (1993). Lattice Boltzmann computations for reaction-diffusion equations. J.Chem.Phys. 98(2), 1514–1523.

    Google Scholar 

  18. Wolf-Gladrow, D. (1995). A lattice Boltzmann equation for diffusion. J.Stat.Phys. 79, 1023–1032.

    Google Scholar 

  19. Wolf-Gladrow, D. (2000). Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  20. Blaak, R., and Sloot, P. M. (2000). Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput.Phys.Comm. 129, 256–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Zheng, CG., Wang, NC. et al. LBGK Simulations of Turing Patterns in CIMA Model. Journal of Scientific Computing 16, 121–134 (2001). https://doi.org/10.1023/A:1012278606077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012278606077

Navigation