Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds

Abstract

A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and α-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Balzarini, J., Neytes, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., and de Clercq, E. (1992). Antiviral Res. 18, 191–207.

    Google Scholar 

  2. Benhamou, N., Broglie, K., Broglie, R., and Chet, I. (1993). Can.J. Microbiol. 39, 318–328.

    Google Scholar 

  3. Broekaert, W. F., Van Parijs, J., Leyns, F., Joos, H., and Peumans, W. (1989). Science 245, 1100–1102.

    Google Scholar 

  4. Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997a). Life Sci. 61, 933–949.

    Google Scholar 

  5. Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997b). Biochem.Mol.Biol.Int. 42, 1163–1169.

    Google Scholar 

  6. Del Campillo, E. and Lewis, L. N. (1992). Plant Physiol. 98, 955–961.

    Google Scholar 

  7. Dong, T. X., Ng, T. B., Wong, R. N. S., Yeung, H. W., and Xu, G. J. (1993). Int.J.Biochem. 25, 415–419.

    Google Scholar 

  8. Eden, L., Heslinga, L., Klok, R., Ledeboer, A. M., Maat, J., Tooene, M. Y., Visser, C., and Verrips, C. (1982). Gene 18, 1–2.

    Google Scholar 

  9. Endo, Y. and Tsurugi, K. (1987). J.Biol.Chem. 262, 8128–8130.

    Google Scholar 

  10. Fabre, C., Causse, H., Mourey, L., Konin, K. J., Riviere, M., Hendriks, H., Puzo, G., Samama, J. P., and Rouge, P. (1998). Biochem.J. 329, 551–560.

    Google Scholar 

  11. Goossens, A., Geremia, R., Bauw, G., Van Montagu, M., and Angenon, G. (1994). Eur.J.Biochem. 225, 787–795.

    Google Scholar 

  12. Gozia, R., Ciopraga, O., Bentia, J., Lungu, T., Zamfirescu, M., Tudor, I., Roseanu, R., and Nitu, F. (1995). FEBS Lett. 370, 245–249.

    Google Scholar 

  13. Graham, J. S., Burkhart, W., Xiong, J., and Gillikin, J. W. (1992) Plant Physiol. 98, 163–165.

    Google Scholar 

  14. Hanselle, T. (1998). Thesis, Institute for Biochemistry and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Germany.

    Google Scholar 

  15. Kamemura, K., Furuichi, Y., Umekawa, H., and Takahashi, H. C. (1993). Biochim.Biophys.Acta 1158, 181–188.

    Google Scholar 

  16. Laemmli, U. K. and Favre, M. (1973). J.Mol.Biol. 80, 575–599.

    Google Scholar 

  17. Lam, Y. H., Wong, Y. S., Wang, B., Wong, R. N. S., Yeung, H. W., and Shaw, P. C. (1986). Plant Science 114, 111–117.

    Google Scholar 

  18. Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. (1991). J.Biol. Chem. 246, 1564–1573.

    Google Scholar 

  19. Le Berre-Anton, V., Bompard-Gilles, C., Payan, F., and Rouge, P. (1997). Biochim.Biophys.Acta 1343, 31–40.

    Google Scholar 

  20. Matsumoto, I. and Osawa, T. (1972). Biochem.Biophys.Res.Commun. 46, 1810–1815.

    Google Scholar 

  21. McGrath, M. S., Hwang, K. M., Caldwell, S. E., Gaston, I., Luk, K. C., Wu, P., Ng, V. L., Crowe, S., Daniels, J., Marsh, J., Deinhart, T., Cekas, P. V., Uemari, J. C., Yeung, H. W., and Lifson, J. F. (1989). Proc.Natl.Acad.Sci.USA 86, 2844–2848.

    Google Scholar 

  22. Mock, J. W. Y., Ng, T. B., Wong, R. N. S., Yao, Q. Z., Yeung, H. W., and Fong, W. P. (1996). Life Sci. 59, 1855–1859.

    Google Scholar 

  23. Nakaguchi, T., Arakawa, T., Philo, J. S., Wen, J., Ishimoto, M., and Yamaguchi, H. (1997). J.Biochem. 121, 350–354.

    Google Scholar 

  24. Ng, T. B., Chan, W. Y., and Yeung, H. W. (1992). Gen.Pharmacol. 23, 575–590.

    Google Scholar 

  25. Pelham, R. B. and Jackson, R. J. (1976). Eur.J.Biochem. 67, 247–256.

    Google Scholar 

  26. Sela, B. A., Lis, H., Shason, N., and Sachs, L. (1973). Biochim.Biophys. Acta 310, 273–277.

    Google Scholar 

  27. She, Q. B., Ng, T. B., and Liu, W. K. (1998). Biochem.Biophys.Res. Commun. 247, 106–111.

    Google Scholar 

  28. Tsao, S. W., Ng, T. B., and Yeung, H. W. (1990). Toxicon 28, 1183–1192.

    Google Scholar 

  29. Verheyden, R., Pletinckx, P., Maes, J., Pepermans, D., Wyns, H. A. M., Willem, L., and Martins, J. C. (1993). C.R.Acad.Sci.Ser.III 316, 788–792.

    Google Scholar 

  30. Vogelsang, R. and Barz, W. (1993). Planta 189, 60–69.

    Google Scholar 

  31. Wang, H. X., Ng, T. B., Liu, W. K., Ooi, V. E. C., and Chang, S. T. (1995). Int.J.Peptide Protein Res. 46, 508–513.

    Google Scholar 

  32. Ye, X. Y., Wang, H. X., and Ng, T. B. (1999). Biochem.Biophys.Res. Commun. 263, 130–134.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, X.Y., Ng, T.B., Tsang, P.W.K. et al. Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds. J Protein Chem 20, 367–375 (2001). https://doi.org/10.1023/A:1012276619686

Download citation

  • Lectin
  • red kidney beans
  • antifungal
  • antiviral