Journal of Protein Chemistry

, Volume 20, Issue 5, pp 367–375 | Cite as

Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds

  • X. Y. Ye
  • T. B. Ng
  • Paul W. K. Tsang
  • J. Wang


A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and α-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities.

Lectin red kidney beans antifungal antiviral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzarini, J., Neytes, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., and de Clercq, E. (1992). Antiviral Res. 18, 191–207.Google Scholar
  2. Benhamou, N., Broglie, K., Broglie, R., and Chet, I. (1993). Can.J. Microbiol. 39, 318–328.Google Scholar
  3. Broekaert, W. F., Van Parijs, J., Leyns, F., Joos, H., and Peumans, W. (1989). Science 245, 1100–1102.Google Scholar
  4. Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997a). Life Sci. 61, 933–949.Google Scholar
  5. Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997b). Biochem.Mol.Biol.Int. 42, 1163–1169.Google Scholar
  6. Del Campillo, E. and Lewis, L. N. (1992). Plant Physiol. 98, 955–961.Google Scholar
  7. Dong, T. X., Ng, T. B., Wong, R. N. S., Yeung, H. W., and Xu, G. J. (1993). Int.J.Biochem. 25, 415–419.Google Scholar
  8. Eden, L., Heslinga, L., Klok, R., Ledeboer, A. M., Maat, J., Tooene, M. Y., Visser, C., and Verrips, C. (1982). Gene 18, 1–2.Google Scholar
  9. Endo, Y. and Tsurugi, K. (1987). J.Biol.Chem. 262, 8128–8130.Google Scholar
  10. Fabre, C., Causse, H., Mourey, L., Konin, K. J., Riviere, M., Hendriks, H., Puzo, G., Samama, J. P., and Rouge, P. (1998). Biochem.J. 329, 551–560.Google Scholar
  11. Goossens, A., Geremia, R., Bauw, G., Van Montagu, M., and Angenon, G. (1994). Eur.J.Biochem. 225, 787–795.Google Scholar
  12. Gozia, R., Ciopraga, O., Bentia, J., Lungu, T., Zamfirescu, M., Tudor, I., Roseanu, R., and Nitu, F. (1995). FEBS Lett. 370, 245–249.Google Scholar
  13. Graham, J. S., Burkhart, W., Xiong, J., and Gillikin, J. W. (1992) Plant Physiol. 98, 163–165.Google Scholar
  14. Hanselle, T. (1998). Thesis, Institute for Biochemistry and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Germany.Google Scholar
  15. Kamemura, K., Furuichi, Y., Umekawa, H., and Takahashi, H. C. (1993). Biochim.Biophys.Acta 1158, 181–188.Google Scholar
  16. Laemmli, U. K. and Favre, M. (1973). J.Mol.Biol. 80, 575–599.Google Scholar
  17. Lam, Y. H., Wong, Y. S., Wang, B., Wong, R. N. S., Yeung, H. W., and Shaw, P. C. (1986). Plant Science 114, 111–117.Google Scholar
  18. Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. (1991). J.Biol. Chem. 246, 1564–1573.Google Scholar
  19. Le Berre-Anton, V., Bompard-Gilles, C., Payan, F., and Rouge, P. (1997). Biochim.Biophys.Acta 1343, 31–40.Google Scholar
  20. Matsumoto, I. and Osawa, T. (1972). Biochem.Biophys.Res.Commun. 46, 1810–1815.Google Scholar
  21. McGrath, M. S., Hwang, K. M., Caldwell, S. E., Gaston, I., Luk, K. C., Wu, P., Ng, V. L., Crowe, S., Daniels, J., Marsh, J., Deinhart, T., Cekas, P. V., Uemari, J. C., Yeung, H. W., and Lifson, J. F. (1989). Proc.Natl.Acad.Sci.USA 86, 2844–2848.Google Scholar
  22. Mock, J. W. Y., Ng, T. B., Wong, R. N. S., Yao, Q. Z., Yeung, H. W., and Fong, W. P. (1996). Life Sci. 59, 1855–1859.Google Scholar
  23. Nakaguchi, T., Arakawa, T., Philo, J. S., Wen, J., Ishimoto, M., and Yamaguchi, H. (1997). J.Biochem. 121, 350–354.Google Scholar
  24. Ng, T. B., Chan, W. Y., and Yeung, H. W. (1992). Gen.Pharmacol. 23, 575–590.Google Scholar
  25. Pelham, R. B. and Jackson, R. J. (1976). Eur.J.Biochem. 67, 247–256.Google Scholar
  26. Sela, B. A., Lis, H., Shason, N., and Sachs, L. (1973). Biochim.Biophys. Acta 310, 273–277.Google Scholar
  27. She, Q. B., Ng, T. B., and Liu, W. K. (1998). Biochem.Biophys.Res. Commun. 247, 106–111.Google Scholar
  28. Tsao, S. W., Ng, T. B., and Yeung, H. W. (1990). Toxicon 28, 1183–1192.Google Scholar
  29. Verheyden, R., Pletinckx, P., Maes, J., Pepermans, D., Wyns, H. A. M., Willem, L., and Martins, J. C. (1993). C.R.Acad.Sci.Ser.III 316, 788–792.Google Scholar
  30. Vogelsang, R. and Barz, W. (1993). Planta 189, 60–69.Google Scholar
  31. Wang, H. X., Ng, T. B., Liu, W. K., Ooi, V. E. C., and Chang, S. T. (1995). Int.J.Peptide Protein Res. 46, 508–513.Google Scholar
  32. Ye, X. Y., Wang, H. X., and Ng, T. B. (1999). Biochem.Biophys.Res. Commun. 263, 130–134.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • X. Y. Ye
    • 1
  • T. B. Ng
    • 1
  • Paul W. K. Tsang
    • 1
  • J. Wang
    • 1
  1. 1.Department of BiochemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong, China

Personalised recommendations