Proper-Time Formulation of Relativistic Dynamics

Abstract

It will be argued that Minkowski's implementation of distances is inconsistent. An alternative implementation will be proposed. In the new model the proper time of an object is taken as its fourth coordinate. Distances will be measured according to a four dimensional Euclidean metric. In the present approach mass is a constant of motion. A mass can therefore be ascribed to photons and neutrinos. Mechanics and dynamics will be reformulated in close correspondence with classical physics. Of particular interest is the equation of motion for the proper time momentum. In the classical limit it reduces to the classical law of conservation of (kinetic+potential) energy. In the relativistic limit it is similar to the conservation of energy of the theory of relativity. The conservation of proper time momentum allows for an alternative explanation for Compton scattering and pair annihilation. On the basis of the proper time formulation of electrodynamics also an alternative explanation will be offered for the spectra of hydrogenic atoms. The proper time formulation of gravitational dynamics leads to the correct predictions of gravitational time dilation, the deflection of light and the precession of the perihelia of planets. For this no curvature will be needed. That is, spacetime is flat everywhere, even in the presence of sources of gravitation. Some cosmological consequences will be discussed. The present approach gives a new notion to energy, antiparticles and the structure of spacetime. The contents of the present paper will have important implications for the foundations of physics in general.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Minkowski, Phys. Z. 20, 104 (1908); reprinted in The Principle of Relativity (Dover, NewYork, 1923).

    Google Scholar 

  2. 2.

    T. E. Phipps, Jr., Heretical Verities (Non-Fiction Library, Urbana, 1986), p. 37.

    Google Scholar 

  3. 3.

    J. R. Fanchi, Found. Phys. 23, 487 (1993).

    Google Scholar 

  4. 4.

    L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  5. 5.

    L. P. Horwitz and A. Soffer, Helv. Phys. Acta 53, 112 (1980).

    Google Scholar 

  6. 6.

    L. P. Horwitz and Y. Lavie, Phys. Rev. D 26, 819 (1982).

    Google Scholar 

  7. 7.

    R. Arshansky and L. P. Horwitz, Phys. Rev. D 29, 2860 (1984).

    Google Scholar 

  8. 8.

    R. Arshansky and L. P. Horwitz, J.Math.Phys. 30, 213 (1988).

    Google Scholar 

  9. 9.

    F. H. Gaioli and E. T. Garcia-Alvarez, Gen. Relativity Gravitation 26, 1267 (1994).

    Google Scholar 

  10. 10.

    J. M. C. Montanus, Phys. Essays 4, 350 (1991).

    Google Scholar 

  11. 11.

    J. M. C. Montanus, Phys. Essays 6, 540 (1993).

    Google Scholar 

  12. 12.

    J. M. C. Montanus, Hadronic J. 22, 625 (1999).

    Google Scholar 

  13. 13.

    A. Shadowitz, Special Relativity (Saunders, 1968), p. 22.

  14. 14.

    B. Nodland and J. P. Ralston, Phys. Rev. Lett. 78, 3043 (1997).

    Google Scholar 

  15. 15.

    P. Marmet, Phys. Essays 9, 96 (1996).

    Google Scholar 

  16. 16.

    T. E. Phipps Jr., Phys. Essays 4, 368 (1991).

    Google Scholar 

  17. 17.

    D. E. Spencer and U. Y. Shama, Phys. Essays 9, 476 (1996).

    Google Scholar 

  18. 18.

    P. Moon, D. E. Spencer, and E. E. Moon, Phys. Essays 4, 249 (1991).

    Google Scholar 

  19. 19.

    R. B. Driscoll, Phys. Essays 7, 355 (1994).

    Google Scholar 

  20. 20.

    R. Hatch, Galilean Electrodyn. 6, 51 (1995).

    Google Scholar 

  21. 21.

    F. Selleri, Open Questions in Relativistic Physics (Apeiron, Montreal, 1998), p. 69.

    Google Scholar 

  22. 22.

    T. L. Gill, Found. Phys. 28, 1561 (1998).

    Google Scholar 

  23. 23.

    H. A. Lorentz, Kon. Akad. Wetensch. Amsterdam 1, 74 (1892); English version: Collected Papers 4 (Nijhoff, Den Haag, 1934- 1939), p. 219.

    Google Scholar 

  24. 24.

    J. M. C. Montanus, Phys. Essays 10, 666 (1997).

    Google Scholar 

  25. 25.

    C. Jeffries, Phys. Essays 8, 168 (1995).

    Google Scholar 

  26. 26.

    Y. Huang, Phys. Essays 8, 532 (1991).

    Google Scholar 

  27. 27.

    J. M. C. Montanus, Phys. Essays 11, 395 (1998).

    Google Scholar 

  28. 28.

    A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).

    Google Scholar 

  29. 29.

    J. M. C. Montanus, Phys. Essays 11, 280 (1998).

    Google Scholar 

  30. 30.

    T. L. Gill, W. W. Zachary, and J. Lindesay, Found. Phys. Lett. 10, 547 (1997).

    Google Scholar 

  31. 31.

    J. M. C. Montanus, Phys. Essays 10, 116 (1997).

    Google Scholar 

  32. 32.

    T. L. Gill, W. W. Zachary, and J. Lindesay, Int. J. Theor. Phys. 37, 2573 (1998).

    Google Scholar 

  33. 33.

    R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (Wiley, NewYork, 1974), p. 112.

    Google Scholar 

  34. 34.

    J. M. C. Montanus, Phys. Essays 11, 563 (1998).

    Google Scholar 

  35. 35.

    H. Arp, Seeing Red (Apeiron, Montreal, 1998).

    Google Scholar 

  36. 36.

    H. Arp, Astrophys. J. 496, 661 (1998).

    Google Scholar 

  37. 37.

    J. Narlikar and H. Arp, Astrophys. J. 405, 51 (1993).

    Google Scholar 

  38. 38.

    R. Hatch, Galilean Electrodyn. 6, 73 (1995).

    Google Scholar 

  39. 39.

    C. K. Whithey, Galilean Electrodyn. 11, 2 (2000).

    Google Scholar 

  40. 40.

    C. M. Will, Was Einstein Right? (Basic Books, NewYork, 1986).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montanus, J.M.C. Proper-Time Formulation of Relativistic Dynamics. Foundations of Physics 31, 1357–1400 (2001). https://doi.org/10.1023/A:1012274211780

Download citation

Keywords

  • Present Approach
  • Proper Time
  • Classical Limit
  • Correct Prediction
  • Compton Scattering