Skip to main content
Log in

The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The cell wall polymer lignin is believed to be condensed by specific cell wall-localized oxidoreductases. In many plants species, including poplar, the peroxidase-directed oxidation of the lignin analogue syringaldazine (SYR) has been localized to cells that undergo secondary wall formation, a process that includes lignification. As a first step to analyse the corresponding peroxidases, we have isolated previously two anionic isoenzymes (PXP 3-4 and PXP 5) from poplar xylem (Populus trichocarpa), which use SYR as a substrate. Here, we demonstrate that these enzymes are responsible for the visualized SYR oxidation in the developing xylem. The cDNA that corresponds to PXP 3-4 was isolated and the deduced protein was found closely related to the other SYR-oxidizing peroxidase PXP 5 (ca. 98% of identity). PXP 3-4 was expressed in a baculovirus expression system yielding high levels of active peroxidase (3 mg/l medium). The heterologously produced protein showed characteristics similar to those of the corresponding protein from poplar xylem (enzymatic properties, isoelectric point, and migration in a native gel). PXP 3-4 was expressed in the stem and in the root xylem. The data demonstrate that PXP 3-4 (and/or PXP 5) are present in differentiating xylem, supporting a function in secondary cell wall formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bednarek, S.Y., Wilkins, T.A., Dombrowski, J.E. and Raikhel, N.V. 1990. A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2: 1145–1155.

    Google Scholar 

  • Carpin, S., Crèvecoeur, M., Greppin, H. and Penel, C. 1999. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol. 120: 799–810.

    Google Scholar 

  • Chen, C., Meyermans, H., Burggraeve, B., De Rycke, R.M., Inoue, K., De Vleesschauwer, V., Steenackers, M., Van Montagu, M.C., Engler, G.J. and Boerjan, W.A. 2000. Cell-specific and conditional expression of caffeoyl-CoA O-methyltransferase in poplar. Plant Physiol. 123: 853–867.

    Google Scholar 

  • Christensen, J.H., Bauw, G., Welinder, K.G., Van Montagu, M. and Boerjan, W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118: 125–135.

    Google Scholar 

  • Christensen, J.H., Baucher, M., O'Connell, A., Van Montagu, M. and Boerjan, W. 2000. Control of lignin biosynthesis. In: S.M. Jain and S.C. Minocha (Eds.) Molecular Biology of Woody Plants, Volume 1 (Forestry Sciences, Vol. 64), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 227–267.

    Google Scholar 

  • Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    Google Scholar 

  • Cooper, C., Packer, N. and Williams, K. 2000. Amino Acid Analysis Protocols (Methods in Molecular Biology), Vol 159), Humana Press, Totowa, NJ.

    Google Scholar 

  • Creighton, T.E. 1993. Proteins, Structures and Molecular Properties, 2nd ed. W.H. Freeman, New York.

    Google Scholar 

  • Dean, J.F.D. and Eriksson, K.E.L. 1994. Laccase and the deposition of lignin in vascular plants. Holzforschung 48: 21–33.

    Google Scholar 

  • Dunford, H.B. 1999. Heme Peroxidases. Wiley-VCH, New York.

    Google Scholar 

  • Foyer, C. 1993. Ascorbic acid. In: R.G. Alscher and J.L. Hess (Eds.) Antioxidants in Higher Plants, CRC Press, Boca Raton, FL, pp. 31–58.

    Google Scholar 

  • Freudenberg, K. 1959. Biosynthesis and constitution of lignin. Nature 183: 1152–1155.

    Google Scholar 

  • Fukuda, H. 1997. Tracheary element differentiation. Plant Cell 9: 1147–1156.

    Google Scholar 

  • Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T. and Poulos, T.L. 1997. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nature Struct. Biol. 4: 1032–1038.

    Google Scholar 

  • Goldberg, R., Catesson, A.-M. and Czaninski, Y. 1981. Histochemical and biochemical characteristics of peroxidases involved in lignification processes of poplar. In: D.G. Robinson and H. Quader (Eds.) Cell Walls' 81 Proceedings of the 2nd Cell Wall Meeting), Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, pp. 251–260.

    Google Scholar 

  • Goldberg, R., Catesson, A.-M. and Czaninski, Y. 1983. Some properties of syringaldazine oxidase, a peroxidase specifically involved in the lignification processes. Z. Pflanzenphysiol. 110: 267–279.

    Google Scholar 

  • Goormachtig, S., Valerio-Lepiniec, M., Szczyglowski, K., Van Montagu, M., Holsters, M. and de Bruijn, F.J. 1995. Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol. Plant-Microbe Interact. 8: 816–824.

    Google Scholar 

  • Harada, H. and Côté, W.A. Jr. 1985. Structure of wood. In: T. Higuchi (Ed.) Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, FL, pp. 1–42.

    Google Scholar 

  • Harkin, J.M. and Obst, J.R. 1973. Lignification in trees: indication of exclusive peroxidase participation. Science 180: 296–298.

    Google Scholar 

  • Hartmann, C. and Ortiz de Montellano, P.R. 1992. Baculovirus expression and characterization of catalytically active horseradish peroxidase. Arch. Biochem. Biophys. 297: 61–72.

    Google Scholar 

  • Hauffe, K.D., Paszkowski, U., Schulze-Lefert, P., Hahlbrock, K., Dangl, J.L. and Douglas, C.J. 1991. A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. Plant Cell 3: 435–443.

    Google Scholar 

  • Hawkins, S., Samaj, J., Lauvergeat, V., Boudet, A. and Grima-Pettenati, J. 1997. Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol. 113: 321–325.

    Google Scholar 

  • Imberty, A., Goldberg, R. and Catesson, A.M. 1985. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 164: 221–226.

    Google Scholar 

  • Johansson, A., Rasmussen, S.K., Harthill, J.E. and Welinder, K.G. 1992. cDNA, amino acid and carbohydrate sequence of barley seed-specific peroxidase BP 1. Plant Mol. Biol. 18: 1151–1161.

    Google Scholar 

  • Kawai, S., Matsumoto, Y., Kajita, S., Yamada, K., Katayama, Y. and Morohoshi, N. 1993. Nucleotide sequence for the genomic DNA encoding an anionic peroxidase gene from a hybrid poplar, Populus kitakamiensis. Biosci. Biotechnol. Biochem. 57: 131–133.

    Google Scholar 

  • Kunze, I., Kunze, G., Bröker, M., Manteuffel, R., Meins, F. Jr. and Müntz, K. 1998. Evidence for secretion of vacuolar α-mannosidase, class I chitinase, and class I β-1,3-glucanase in suspension cultures of tobacco cells. Planta 205: 92–99.

    Google Scholar 

  • Lagrimini, L.M. 1991. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 96: 577–583

    Google Scholar 

  • Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S. and Liu, T.-T.Y. 1997. Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiol. 114: 1187–1196.

    Google Scholar 

  • McManus, M.T. and Ashford, D.A. 1997. Glycosylation of plant peroxidases. Plant Peroxidase Newsl. 10: 15–23.

    Google Scholar 

  • Melo, N.S., Nimtz, M., Conradt, H.S., Fevereiro, P.S. and Costa, J. 1997. Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett. 415: 186–191.

    Google Scholar 

  • Osakabe, K., Koyama, H., Kawai, S., Katayama, Y. and Morohoshi, N. 1994. Molecular cloning and the nucleotide sequences of two novel cDNAs that encode anionic peroxidases of Populus kitakamiensis. Plant Sci. 103: 167–175.

    Google Scholar 

  • Osakabe, K., Koyama, H., Kawai, S., Katayama, Y. and Morohoshi, N. 1995. Molecular cloning of two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential regulation in the stem. Plant Mol. Biol. 28: 677–689.

    Google Scholar 

  • Pang, A., Catesson, A.-M., Francesch, C., Rolando, C. and Goldberg, R. 1989. On substrate specificity of peroxidases involved in the lignification process. J. Plant Physiol. 135: 325–329.

    Google Scholar 

  • Penel, C. and Greppin, H. 1996. Pectin binding proteins: characterization of the binding and comparison with heparin. Plant Physiol. Biochem. 34: 479–488.

    Google Scholar 

  • Saka, S. and Goring, D.A.I. 1985. Localization of lignins in wood cell walls. In: T. Higuchi, (Ed.) Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, FL, pp. 51–62.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Sayle, R.A, and Milner-White, E.J. 1995. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20: 374–376.

    Google Scholar 

  • Simon, P. 1992. Molecular cloning of plant peroxidases. In: C. Penel, T. Gaspar and H. Greppin (Eds.) Plant Peroxidases 1980¶ 1990: Topics and Detailed Literature on Molecular, Biochemical, and Physiological Aspects, Université de Genève, Genève, Switzerland pp. 47–58.

    Google Scholar 

  • Sterjiades, R., Dean, J.F.D., Gamble, G., Himmelsbach, D.S. and Eriksson, K.E.L. 1993. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190: 75–87.

    Google Scholar 

  • Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlén, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95: 13330–13335.

    Google Scholar 

  • Tams, J.W. and Welinder, K.G. 1995. Mild chemical deglycosyla-tion of horseradish peroxidase yields a fully active, homogeneous enzyme. Anal. Biochem. 228: 48–55.

    Google Scholar 

  • Tams, J.W. and Welinder, K.G. 1998. Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase. FEBS Lett. 421: 234–236.

    Google Scholar 

  • Takahashi, N., Lee, K.B., Nakagawa, H., Tsukamoto, Y., Masuda, K. and Lee, Y.C. 1998. New N-glycans in horseradish peroxidase. Anal. Biochem. 255: 183–187.

    Google Scholar 

  • Theilade, B., Rasmussen, S.K., Rosenkrands, I., FrØkiær, H., Theilade, J., Pihakaski-Maunsbach, K. and Maunsbach, A.B. 1993. Subcellular localization of barley grain peroxidase BP 2 by immuno-electron microscopy. In: K.G. Welinder, S.K. Ras-mussen, C. Penel and H. Greppin (Eds.) Plant Peroxidases: Biochemistry and Physiology (3rd International Symposium Proceedings), Université de Genève, Genève, Switzerland pp. 321–324.

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Tognolli, M., Overney, S., Penel, C., Greppin, H. and Simon, P. 2000. A genetic and enzymatic survey of Arabidopsis thaliana peroxidases. Plant Peroxidase Newsl. 14: 3–12.

    Google Scholar 

  • Tsutsumi, Y., Matsui, K. and Sakai, K. 1998. Substrate-specific peroxidases in woody angiosperms and gymnosperms participate in regulating the dehydrogenative polymerization of syringyl and guaiacyl type lignins. Holzforschung 52: 275–281.

    Google Scholar 

  • Welinder, K.G. 1979. Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur. J. Biochem. 96: 483–502.

    Google Scholar 

  • Welinder, K.G. 1992. Plant peroxidases: structure, function relationships. In: C. Penel, T. Gaspar and H. Greppin (Eds.) Plant Peroxidases 1980¶1990: Topics and Detailed Literature on Molecular, Biochemical and Physiological Aspects, Université de Genève, Genève, Switzerland pp. 1–24.

    Google Scholar 

  • Welinder, K.G., Mauro, J.M. and NØrskov-Lauritsen, L. 1992. Structure of plant and fungal peroxidases. Biochem. Soc. Transact. 20: 337–340.

    Google Scholar 

  • Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D. and Van Camp, W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16: 4806–4816.

    Google Scholar 

  • Young, R.A. and Davis, R.W. 1983. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80: 1194–1198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst Christensen, J., Overney, S., Rohde, A. et al. The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol Biol 47, 581–593 (2001). https://doi.org/10.1023/A:1012271729285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012271729285

Navigation