Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics

Abstract

We develop a food-fish model (FFM), whichquantitatively relates properties of aquaticfood types (size, shape, escape velocity,habitat, mechanical properties and chemicalquality) to feeding structures of cyprinidfish. The model is based on functionalmorphology and experiments on search, capture,selection, and internal processing of food byfish. The FFM shows which food properties aremost critical in feeding and how fish canoptimise coping with them. Relative food sizeimposes the highest demands, followed by preyvelocity, food habitat and mechanicalproperties. These overrule taxonomic affinitiesof food types. Highly demanding food types(large, fast prey, suspensions of plankton,benthic prey and mechanically tough items)impose incompatible morphological requirementson fish. We apply the FFM to the endemic Barbus species flock of Lake Tana (Ethiopia),since the structural diversity of its 14species reflects recent adaptations to trophicniches. We predict their potentials inutilising different food types by quantitativecomparisons of 35 parameters, measured for eachspecies, with the values for each foodspecialist derived from the FFM. These dietpredictions are tested against gut contentsfrom 4,711 fish, sampled over seasons andhabitats. Gut contents and predictions show agood overall fit. The value of the model isshown by its resolution in predicting resourcepartitioning among the barbs. For the 14 barbsa trophic hierarchy with six major trophicgroups is reconstructed which closely matchesthe predictions. Trophic specialists (> 65%by volume of a single food type) are alsostructurally specialised, whereas less extremeanatomical structures characterise trophicgeneralists, allowing them to switch betweenfeeding modes. Trophic generalists are bestdefined by behavioral flexibility, sincefeeding modes integrate both fish and foodcharacters. The FFM is of practical use inevaluating the role of morphological diversityin an ecosystem and enables the analysis oftrophic interactions in fish communities and ofthe cascading effects by environmental change.Such an approach can be instrumental in thedevelopment of management strategies forfisheries and in conservation of biodiversity.

This is a preview of subscription content, log in to check access.

Reference

  1. Archie, J.W. (1985) Methods for coding variable morphological features for numerical taxonomic analysis. Syst. Zool. 34, 326–345.

    Google Scholar 

  2. Atema, J. (1971) Structures and functions of the sense of taste in catfish (Ictalurus natalis). Brain, Behav. Evol. 4, 273–294.

    Google Scholar 

  3. Barel, C.D.N., Anker, G.C., Witte, F., Hoogerhoud, R.J.C.and Goldschmidt, T. (1989) Constructional constraints and its ecomorphological implications. Acta Morphol. Neerl.-Scand. 27, 83–109.

    Google Scholar 

  4. Barnard, E.A. (1973) Biochemical adaptations to diet. In: Prosser, C.L. (ed.), Comparative Animal Physiology. Saunders, Philadelphia, pp. 147–152.

    Google Scholar 

  5. Boddeke, R., Slijper, E.J. and van der Stelt, A. (1959) Histological characteristics of the body-musculature of fishes in connection with their mode of life. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 62, 576–588.

    Google Scholar 

  6. Bond, C.E. (1979) Biology of Fishes. Saunders, Philadelphia, 514 pp.

    Google Scholar 

  7. Bouton, N., van Os, N. and Witte, F. (1998) Feeding performance of Lake Victoria rock cichlids: testing predictions from morphology. J. Fish Biology, Suppl. A 53, 118–127.

    Google Scholar 

  8. Christensen, B. (1996) Predator foraging capabilities and prey antipredator behaviors: pre-versus postcapture constraints on size-dependent predator-prey interactions. Oikos 76, 368–380.

    Google Scholar 

  9. Chu, Y.T. (1935) Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution. Biological Bulletin of St. John's University Shanghai 2, 1–225.

    Google Scholar 

  10. Crowder, L.B. (1984) Character displacement and habitat shift in a native cisco in southeastern Lake Michigan: evidence for competition? Copeia 1984, 878–883.

    Google Scholar 

  11. Dabrowski, K.R. (1982) The influence of light intensity on feeding of fish larvae and fry. II. Rutilus rutilus L. and Perca fluviatilis L. Zoologische Jahrbücher, Abteilung für Physiologie 86, 353–360.

    Google Scholar 

  12. Davis, B.J. and Miller, R.J. (1967) Brain patterns in minnows of the genus Hybopsis in relation to feeding habits and habitat. Copeia 1967, 1–39.

    Google Scholar 

  13. de Visser, J. and Barel, C.D.N. (1996) Architectonic constraints on the hyoid's optimal starting position for suction feeding of fish. J. Morphol. 228, 1–18.

    Google Scholar 

  14. Douglas, M.E. and Matthews, W.J. (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65, 231–244.

    Google Scholar 

  15. Elshoud, G.C.A. (1986) Fish and Chips, Computer Models and Functional Morphology of Fishes. PhD Dissertation, University Leiden, Netherlands, 122 pp.

    Google Scholar 

  16. Evans, H.E. (1952) The correlation of brain pattern and feeding habits in four species of cyprinid fishes. J. Comp. Neurol. 97, 133–142.

    Google Scholar 

  17. Felley, J.D. (1984) Multivariate identification of morphologicalenvironmental relationships within the Cyprinidae (Pisces). Copeia 1984, 442–455.

    Google Scholar 

  18. Fernald, R.D. (1988) Aquatic adaptations in fish eyes. In: Atema, J., Fay, R.R., Popper, N.N. and Tavolga, W.N. (eds.), Sensory Biology of Aquatic Animals. Springer Verlag, New York, pp. 435–466.

    Google Scholar 

  19. Finger, T.E. (1988) Sensorimotor mapping in oropharyngeal reflexes in goldfish, Carassius auratus. Brain, Behav. Evol. 31, 17–24.

    Google Scholar 

  20. Gatz, A.J, Jr. (1979a) Community organization in fishes as indicated by morphological features. Ecology 60, 11–718.

    Google Scholar 

  21. Gatz, A.J., Jr. (1979b) Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21, 91–124.

    Google Scholar 

  22. Gerking, S.D. (1994) Feeding Ecology of Fish. Academic Press, London, 416 pp.

    Google Scholar 

  23. Gordon, J.E. (1976) The New Science of Strong Materials: or Why You Don't Fall through the Floor. Pelican Books, Harmondsworth, Middlesex, 287 pp.

    Google Scholar 

  24. Gosline, W.A. (1973) Considerations regarding the phylogeny of cypriniform fishes, with special reference to structures associated with feeding. Copeia 1973, 761–776.

    Google Scholar 

  25. Goulding, M. (1985) Forest fishes of the Amazon. In: Prance, G.T. and Lovejoy, T.E. (eds.), Key Environments of Amazonia. Pergamon Press, New York, pp. 267–276.

    Google Scholar 

  26. Grossman, G.D. (1986) Food resource partitioning in a rocky intertidal fish assemblage. J. Zool., Lond. 1, 317–355.

    Google Scholar 

  27. Hambright, K.D. (1991) Experimental analysis of prey selection by largemouth bass: role of predator mouth width and prey body depth. Trans. Am. Fish. Soc. 120, 501–508.

    Google Scholar 

  28. Hofer, R. (1991) Digestion. In: Winfield, I.J. and Nelson, J.S. (eds.), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London, pp. 413–425.

    Google Scholar 

  29. Holčik, J., Bănărescu, P. and Evans, D. (1989) A general introduction to fishes. In: Holčik, J. (ed.), General Introduction to Fishes. Acipenseriformes (The fresh water fishes of Europe), Vol. 1, part 2. Aula Verlag, Wiesbaden, Germany, pp. 18–147.

    Google Scholar 

  30. Hoogenboezem, W., van den Boogaart, J.G.M., Sibbing, F.A., Lammens, E.H.R.R., Terlouw, A. and Osse, J.W.M. (1991) A new model of particle retention and branchial sieve adjustment in filter-feeding bream (Abramis brama, Cyprinidae). Can. J. Fish. Aquat. Sci. 48, 7–18.

    Google Scholar 

  31. Hoogenboezem, W., Lammens, E.H.R.R., van Vugt, Y. and Osse, J.W.M. (1992) A model for switching between particulatefeeding and filter-feeding in the common bream, Abramis brama. Env. Biol. Fish. 33, 13–21.

    Google Scholar 

  32. Hoyle, J.A. and Keast, A. (1987) The effects of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Can. J. Zool. 65, 1972–1977.

    Google Scholar 

  33. Hoyle, J.A. and Keast, A. (1988) Prey handling time in two piscivores, (Esox americanus vermiculatus) and (Micropterus salmoides), with contrasting mouth morphologies. Can. J. Zool. 66, 540–542.

    Google Scholar 

  34. Hubbs, C.L. and Lagler, K.F. (1947) Fishes of the Great Lakes Region. University of Michigan Press, Ann Arbor, Michigan, 213 pp.

    Google Scholar 

  35. Hugueny, B. and Pouilly, M. (1999) Morphological correlates of diet in an assemblage of West-African freshwater fishes. J. Fish Biol. 54, 1310–1325.

    Google Scholar 

  36. Janssen, J. (1976) Feeding modes and prey size selection in the alewife (Alosa pseudoharengus). J. Fish. Res. Bd Can. 33, 1972–1975.

    Google Scholar 

  37. Jeronomidis, G. (1991) Mechanical and fracture properties of cellular and fibrous material. In: Vincent, J.F.V. and Lillford, P.J. (eds.), Feeding and the Texture of Food (SEB Seminar Series 44). Cambridge University Press, Cambridge, pp. 1–17.

    Google Scholar 

  38. Keast, A. and Webb, D. (1966) Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Bd Can. 23, 1845–1874.

    Google Scholar 

  39. Kiyohara, S., Yamashita, S. and Kitoh, J. (1984) Rapid location of fish taste buds by a selective surface staining method. Bull. Japan. Soc. Sci. Fish. 50, 1293–1297.

    Google Scholar 

  40. Kotrschal, K. (1989) Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological role. Env. Biol. Fish. 24, 199–218.

    Google Scholar 

  41. Kotrschal, K., Brandstätter, R., Gomahr, A., Junger, H., Palzenberger, M. and Zaunreiter, M. (1991) Brain and sensory systems. In: Winfield, I.J. and Nelson, J.S. (eds.), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London, pp. 284–331.

    Google Scholar 

  42. Kramer, D.L. and Bryant, M.J. (1995) Intestine length in the fishes of a tropical stream: 2. Relationships to diet - the long and short of a convoluted issue. Env. Biol. Fish. 42, 129–141.

    Google Scholar 

  43. Lammens, E.H.R.R. and Hoogenboezem, W. (1991) Diets and feeding behavior. In: Winfield, I.J. and Nelson, J.S. (eds.), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London, pp. 353–376.

    Google Scholar 

  44. Lauder, G.V. (1980) Hydrodynamics of prey capture by teleost fishes. In: Schneck, D. (ed.), Biofluid Mechanics, volume 2. Plenum Press, New York, pp. 161–181.

    Google Scholar 

  45. Lazzaro, X. (1987) A review of planktivorous fishes: their evolution, feeding behaviors, selectivities, and impacts. Hydrobiologia 146, 97–167.

    Google Scholar 

  46. Lévê que, C. (1995) Role and consequences of fish diversity in the functioning of African freshwater ecosystems: a review. Aquat. Living Resour. 8, 59–78.

    Google Scholar 

  47. Liem, K.F. (1980) Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20, 295–314.

    Google Scholar 

  48. Liem, K.F. (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Amer. Zool. 30, 209–221.

    Google Scholar 

  49. Liem, K.F. (1991) A functional approach to the development of the head of teleosts: implications on constructional morphology and constraints. In: Schmidt-Kittler, N. and Vogel, K. (eds.), Constructional Morphology and Evolution. Springer Verlag, Berlin, pp. 231–249.

    Google Scholar 

  50. Lindsey, C.C. (1981) Stocks are chameleons: plasticity in gill rakers of coregonid fishes. Can. J. Fish. Aquat. Sci. 38, 1497–1506.

    Google Scholar 

  51. Lundvall, D., Svanbaeck, R., Persson, L. and Bystroem, P. (1999) Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can. J. Fish. Aquat. Sci. 56, 1285–1292.

    Google Scholar 

  52. Matthes, H. (1963) A comparative study of the feeding mechanisms of some African Cyprinidae (Pisces, Cypriniformes). Bijdragen tot de Dierkunde, Amsterdam 33, 1–35.

    Google Scholar 

  53. Mills, E.L., Forney, J.L. and Wagner, K.J. (1987) Fish predation and its cascading effects on the Oneida Lake food chain. In: Kerfoot, W.C. and Sih, A. (eds.), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, pp. 118–131.

    Google Scholar 

  54. Mittelbach, G.G. and Persson, L. (1998) The ontogeny of piscivory and its ecological consequences. Can. J. Fish. Aquat. Sci. 55, 1454–1465.

    Google Scholar 

  55. Mohr, P.A. (1962) The Geology of Ethiopia. Addis Ababa University Press, Addis Ababa, 268 pp.

    Google Scholar 

  56. Moore, G.A. (1950) The cutaneous sense organs of barbeled minnows adapted to life in the muddy waters of the Great Plains region. Trans. Am. Microsc. Soc. 69, 69–95.

    Google Scholar 

  57. Moriarty, D.J.W. (1973) The physiology of digestion of blue green algae in the cichlid fish, Tilapia nilotica. J. Zool., Lond. 171, 25–39.

    Google Scholar 

  58. Motta, P.J. (1984) Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984, 1–18.

    Google Scholar 

  59. Motta, P.J. and Kotrschal, K.M. (1992) Correlative, experimental and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42, 400–415.

    Google Scholar 

  60. Motta, P.J., Clifton, K.B., Hernandez, P. and Eggold, B.T. (1995) Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilisation. Env. Biol. Fish. 44, 37–60.

    Google Scholar 

  61. Muller, M. (1987) Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). J. theor. Biol. 126, 343–368.

    Google Scholar 

  62. Muller, M. (1989) A quantitative theory of expected volume changes of the mouth during feeding in teleost fishes. J. Zool., Lond. 217, 639–662.

    Google Scholar 

  63. Muller, M. and Osse, J.W.M. (1984) Hydrodynamics of suction feeding in fish. Trans. Zool. Soc. Lond. 37, 51–135.

    Google Scholar 

  64. Muller, M., Osse, J.W.M. and Verhagen, J.H.G. (1982) A quantitative hydrodynamical model of suction feeding in fish. J. Theor. Biol. 95, 49–79.

    Google Scholar 

  65. Nagelkerke, L.A.J. and Sibbing, F.A. (1996) Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): the effects of morphology and behavior. Can. J. Fish. Aquat. Sci. 53, 2847–2861.

    Google Scholar 

  66. Nagelkerke, L.A.J. and Sibbing, F.A. (1997). A revision of the large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana, Ethiopia, with a description of seven new species. In: Nagelkerke, L.A.J. (ed.), The Barbs of Lake Tana, Ethiopia. Special issue Wageningen University, Wageningen, pp. 105–170.

    Google Scholar 

  67. Nagelkerke, L.A.J. and Sibbing, F.A. (2000) The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis. Neth. Journal of Zoology 50, 179–214.

    Google Scholar 

  68. Nagelkerke, L.A.J., Sibbing, F.A., van den Boogaart, J.G.M., Lammens, E.H.R.R. and Osse, J.W.M. (1994) The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Env. Biol. Fish. 35, 1–22.

    Google Scholar 

  69. Nagelkerke, L.A.J., Sibbing, F.A. and Osse, J.W.M. (1995) Morphological divergence during growth in the large barbs (Barbus spp.) of Lake Tana, Ethiopia. Neth. J. Zool. 45, 431–454.

    Google Scholar 

  70. Nelson, J.S. (1994) Fishes of the World. John Wiley, New York, 600 pp.

    Google Scholar 

  71. Nikolsky, G.V. (1963) The Ecology of Fishes. Academic Press, London, 352 pp.

    Google Scholar 

  72. Norton, S.F. (1995) A functional approach to ecomorphological patterns of feeding in cottid fishes. Env. Biol. Fish. 44, 61–78.

    Google Scholar 

  73. Norton, S.F. and Brainerd, E.L. (1993) Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176, 11–29.

    Google Scholar 

  74. Olson, M.H., Mittelbach, G.G. and Osenberg, C.W. (1995) Competition between predator and prey: resource-based mechanisms and implications for stage-structured dynamics. Ecology 76, 1758–1771.

    Google Scholar 

  75. Osse, J.W.M. (1969) Functional morphology of the head of the perch (Perca fluviatilis L.): an electromyographic study. Neth. J. Zool. 19, 289–392.

    Google Scholar 

  76. Osse, J.W.M. (1985) Jaw protrusion, an optimization of the feeding apparatus of teleosts? Acta Biotheoretica 34, 219–232.

    Google Scholar 

  77. Osse, J.W.M. (1990) Form changes in fish larvae in relation to changing demands of function. Neth. J. Zool. 40, 362–385.

    Google Scholar 

  78. Osse, J.W.M., Sibbing, F.A. and van den Boogaart, J.G.M. (1997) Intra-oral food manipulation of carp and other cyprinids: adaptations and limitations. Acta Physiol. Scand. 161 (S 638), 47–57.

    Google Scholar 

  79. Otten, E. (1981) Vision during growth of a generalised Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 31, 650–700.

    Google Scholar 

  80. Persson, L., Leonardsson, K., de Roos, A.M., Gyllenberg, M. and Christensen, B. (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theoretical Population Biology 54, 270–293.

    Google Scholar 

  81. Pet, J.S., Gevers, G.J.M., van Densen, W.L.T. and Vijverberg, J. (1996) Management options for a more complete utilisation of the biological fish production in Sri Lankan reservoirs. Ecology of Freshwater Fish 5, 1–14.

    Google Scholar 

  82. Piet, G.J. (1998) Ecomorphology of a size-structured tropical freshwater fish community. Env. Biol. Fish. 51, 67–86.

    Google Scholar 

  83. Ricklefs, R.E. and Miles, D.B. (1994) Ecological and evolutionary inferences from morphology. In: Wainwright, P.C. and Reilly, S.M. (eds.), Ecological Morphology, Integrative Organismal Biology. The University of Chicago Press, Chicago, pp. 13–41.

    Google Scholar 

  84. Rohlf, F.J. (1993) NTSYS-pc. Numerical Taxonomy and Multivariate System, version 1.80. Exeter Software, Applied Biostatistics Inc., Setauket, New York.

    Google Scholar 

  85. Ross, S.T. (1986) Resource partitioning in fish assemblages: a review of field studies. Copeia 1986, 352–388.

    Google Scholar 

  86. Rzó ska, J. (1976) Lake Tana, headwaters of the Blue Nile. In: Rzó ska, J. (ed.), The Nile, Biology of an Ancient River. Dr. W. Junk Publishers, The Hague, pp. 223–232.

    Google Scholar 

  87. Sanderson, S.L. and Kupferberg, S.J. (1999) Development and evolution of aquatic larval feeding mechanisms. In: Hall, B.K. and Wake, M.H. (eds.), The Origin and Evolution of Larval Forms. Academic Press, San Diego, pp. 301–377.

    Google Scholar 

  88. Sibbing, F.A. (1982) Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. J. Morphol. 172, 223–258.

    Google Scholar 

  89. Sibbing, F.A. (1987) The role of taste in the feeding mechanism of the carp (Cyprinidae). Annals of the New York Academy of Sciences 510, 612–615.

    Google Scholar 

  90. Sibbing, F.A. (1988) Specializations and limitations in the utilization of food resources by the carp (Cyprinus carpio L.): a study of oral food processing. Env. Biol. Fish. 22, 161–178.

    Google Scholar 

  91. Sibbing, F.A. (1991a) Food Capture and Oral Processing. In: Winfield, I.J. and Nelson, J.S. (eds.), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London, pp. 377–412.

    Google Scholar 

  92. Sibbing, F.A. (1991b) Food processing by mastication in cyprinid fish. In: Vincent, J.F.V. and Lillford, P.J. (eds.), Feeding and the Texture of Food (SEB Seminar Series 44) Cambridge University Press, Cambridge, pp. 57–92.

    Google Scholar 

  93. Sibbing, F.A. and Uribe, R. (1985) Regional specializations in the oropharyngeal wall and food processing in the carp (Cyprinus carpio L.). Neth. J. Zool. 35, 377–422.

    Google Scholar 

  94. Sibbing, F.A., Osse, J.W.M. and Terlouw, A. (1986) Food handling in the carp (Cyprinus carpio L.): its movement patterns, mechanisms and limitations. J. Zool., Lond.(A) 210, 161–203.

    Google Scholar 

  95. Sibbing, F.A., Nagelkerke, L.A.J. and Osse, J.W.M. (1994) Ecomorphology as a tool in fisheries: identification and ecotyping of Lake Tana barbs (Barbus intermedius complex), Ethiopia. Neth. J. Agricult. Sci. 42, 77–85.

    Google Scholar 

  96. Sibbing, F.A., Nagelkerke, L.A.J., Stet, R.J.M. and Osse, J.W.M. (1998) Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by trophic resource partitioning; a molecular and ecomorphological approach. Aquatic Ecology 32, 217–227.

    Google Scholar 

  97. Simon, C.M. (1983) A new coding procedure for morphometric data with an example from periodical cicada wing veins. In: Felsenstein, J. (ed.), Numerical Taxonomy (Proceedings of the NATO Advanced Study Institute. NATO Adv. Study Institute Ser. G [Ecological Sciences], No.1). Springer-Verlag, Berlin, pp. 378–382.

    Google Scholar 

  98. Sokal, R.R. and Rohlf, F.J. (1995) Biometry. Freeman, New York, pp. 1–887.

    Google Scholar 

  99. Strauss, R.E. (1987) The importance of phylogenetic constraints in comparisons of morphological structure among fish assemblages. In: Mathews, W.J. and Heins, D.C (eds.), Evolutionary Ecology of North American Stream Fishes. University of Oklahoma Press, Norman, pp. 136–143.

    Google Scholar 

  100. Uribe-Zamora, M. (1975) Selection des proies par le filtre branchial de la carpe miroir (Cyprinus carpio). PhD Dissertation, University of Lyon, Lyon, 127 pp.

    Google Scholar 

  101. van den Berg, C., Sibbing, F.A., Osse, J.W.M. and Hoogenboezem, W. (1992) Structure, development and function of the branchial sieve of bream (Abramis brama), white bream (Blicca björkna) and roach (Rutilus rutilus). Env. Biol. Fish. 33, 105–124.

    Google Scholar 

  102. van den Berg, C., van den Boogaart, J.G.M., Sibbing, F.A., Lammens, E.H.R.R. and Osse, J.W.M. (1993) Shape of zooplankton and retention in filter-feeding: quantitative comparison between industrial sieves and the branchial sieves of common bream (Abramis brama) and white bream (Blicca bjoerkna). Can. J. Fish. Aquat. Sci. 50, 716–724.

    Google Scholar 

  103. van den Berg, C., van den Boogaart, J.G.M., Sibbing, F.A. and Osse, J.W.M. (1994) Zooplankton feeding in common bream (Abramis brama), white bream (Blicca bjoerkna) and roach (Rutilus rutilus): experiments, models and energy intake. Neth. J. Zool. 44, 15–42.

    Google Scholar 

  104. van Leeuwen, J.L. (1984) A quantitative study of flow in prey capture by rainbow trout, Salmo gairdneri with general consideration of the actinopterygian feeding mechanism. Trans. Zool. Soc. Lond. 37, 171–227.

    Google Scholar 

  105. van Leeuwen, J.L. and Muller, M. (1984) Optimum sucking techniques for predatory fish. Trans. Zool. Soc. Lond. 37, 137–169.

    Google Scholar 

  106. van der Meer, H.J. and Anker, G.C. (1984) Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34, 197–209.

    Google Scholar 

  107. Verigina, I.A. (1991) Basic adaptations of the digestive system in bony fishes as a function of diet. J. Ichthyol. 31, 8–20.

    Google Scholar 

  108. Vincent, J.F.V. (1990) Structural Biomaterials. Princeton University Press, Princeton, 244 pp.

    Google Scholar 

  109. Vincent, J.F.V. (1991) Plants as food. In: Vincent, J.F.V. and Lillford, P.J. (eds.), Feeding and the Texture of Food (SEB Seminar Series 44) Cambridge University Press, Cambridge, pp. 19–33.

    Google Scholar 

  110. Vincent J.F.V. and Sibbing F.A. (1992) How the grasscarp (Ctenopharyngodon idella) chooses and chews its food - some clues. J. Zool., Lond. 226, 435–444.

    Google Scholar 

  111. Wahl, D.H. and Stein, R.A. (1988) Selective predation by three esocids: the role of prey behavior and morphology. Trans. Am. Fish. Soc. 117, 142–151.

    Google Scholar 

  112. Wainwright, P.C. and Reilly, S.M. (eds.) (1994) Ecological Morphology, Integrative Organismal Biology. The University of Chicago Press, Chicago, 367 pp.

    Google Scholar 

  113. Wainwright, P.C. and Richard, B.A. (1995) Predicting patterns of prey use from morphology of fishes. Env. Biol. Fish. 44, 97–113.

    Google Scholar 

  114. Wanink, J.H. and Witte, F. (2000) Rapid morphological changes following niche shift in the zooplanktivorous cyprinid Rastrineobola argentea from Lake Victoria. Neth. J. Zool. 50, 365–372.

    Google Scholar 

  115. Webb, P.W. (1984) Body form, locomotion and foraging in aquatic vertebrates. Amer. Zool. 24, 107–120.

    Google Scholar 

  116. Webb, P.W. (1988) Simple physical principles and vertebrate locomotion. Amer. Zool. 28, 709–725.

    Google Scholar 

  117. Werner, E.E. (1974) The fish size, prey size, handling time relation in several sunfishes and some implications. J. Fish. Res. Bd Can. 31, 1531–1536.

    Google Scholar 

  118. Werner, E.E. and Gilliam, J.F. (1984) The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393–426.

    Google Scholar 

  119. Wikramanayake, E.D. (1990) Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71, 1756–1764.

    Google Scholar 

  120. Winnemiller, K.O. (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61, 343–365.

    Google Scholar 

  121. Witte, F. and van Oijen, M.J.P. (1990) Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups. Zoöl. Verh., Leiden 262, 1–47.

    Google Scholar 

  122. Wootton, R.J. (1990) Ecology of Teleost Fishes. Chapman and Hall, London, 416 pp.

    Google Scholar 

  123. Zander, E. (1906) Das Kiemenfilter der Teleoster. Zeitschrift fürWissenschaftliche Zoologie 84, 619–713.

    Google Scholar 

  124. Zaret, T.M. (1980) Predation and Freshwater Communities. Yale University Press, London, 187 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sibbing, F.A., Nagelkerke, L.A. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish Biology and Fisheries 10, 393–437 (2000). https://doi.org/10.1023/A:1012270422092

Download citation

  • Barbus
  • cyprinids
  • ecomorphology
  • feeding mechanisms
  • food properties
  • functional morphology