Schrödinger-Like Relativistic Wave Equation of Motion for the Lorentz-Scalar Potential


A Schrödinger-like relativistic wave equation of motion for the Lorentz-scalar potential is formulated based on a Lagrangian formalism of relativistic mechanics with a scaled time as the evolution parameter. Applications of this Schrödinger-like formalism for the Lorentz-scalar potential are given: For the square-step potential, the predictions of this formalism are free from the Klein paradox, and for the Coulomb potential, this formalism yields the exact bound-state eigenenergies and eigenfunctions.

This is a preview of subscription content, log in to check access.


  1. 1.

    I. Bloch and H. Crater, Am. J. Phys. 49, 67 (1981).

    Google Scholar 

  2. 2.

    B. Sahu, M. Z. Rahman Khan, C. S. Shastry, B. Dey, and S. C. Phatak, Am. J. Phys. 57, 886 (1989).

    Google Scholar 

  3. 3.

    B. Ram, Am. J. Phys. 50, 549 (1982).

    Google Scholar 

  4. 4.

    B. Bergerhoff and G. Soff, .Naturforsch. 49a, 997 (1994).

    Google Scholar 

  5. 5.

    Rajak K. Bhaduri, Models of the Nucleon (From Quark to Soliton) (Addison- Wesley, New York, 1988), Chap. 2.

    Google Scholar 

  6. 6.

    Y.-S. Huang, Nuovo Cimento B 112, 75 (1997).

    Google Scholar 

  7. 7.

    Y.-S. Huang, “Formulation of Schrödinger-like relativistic wave equation of motion,” in International PRQT Conference Proceedings (Houston, Texas, USA, 1998); Found. Phys. 28, 1551 (1998).

    Google Scholar 

  8. 8.

    Y.-S. Huang, Phys. Lett. A 219, 145 (1996).

    Google Scholar 

  9. 9.

    P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon Press, Oxford, 1958).

    Google Scholar 

  10. 10.

    J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  11. 11.

    W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, with an Introduction into Modern Relativistic Quantum Mechanics (Springer, New York, 1985).

    Google Scholar 

  12. 12.

    O. Klein, Z. Physik 53, 157 (1929).

    Google Scholar 

  13. 13.

    H. Wergeland, “The Klein paradox revisited,” in Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983), p. 503.

    Google Scholar 

  14. 14.

    Formulas and Theorems for the Special Functions of Mathematical Physics, W. Magnus, F. Oberhettinger, and R. P. Soni, eds. (Springer, New York, 1966), pp. 239–245.

    Google Scholar 

  15. 15.

    M. N. Sergeenko, Phys. Rev. A 53, 3798 (1996).

    Google Scholar 

  16. 16.

    M. N. Sergeenko, Mod. Phys. Lett. A 12, 2859 (1997).

    Google Scholar 

  17. 17.

    W. Greiner, Relativistic Quantum Mechanics, 2ndprinting (Springer, New York, 1994),Chap. 1.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, YS. Schrödinger-Like Relativistic Wave Equation of Motion for the Lorentz-Scalar Potential. Foundations of Physics 31, 1287–1298 (2001).

Download citation


  • Wave Equation
  • Coulomb Potential
  • Lagrangian Formalism
  • Relativistic Mechanic
  • Evolution Parameter