Skip to main content
Log in

Fullerene Derivatives Embedded in Hybrid Sol-Gel Glasses: Nonlinear Optical Properties and Optical Limiting Performances

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid organic-inorganic materials are investigated as suitable materials for inclusion of fullerene derivatives and for fabrication of laser protection devices. A specific synthesis has been developed in order to optimize non-linear optical performances of fullerene derivatives. 3-glicydoxypropyltrymethoxysilane has been used as an inorganic and organic network former to obtain the host material. The sol-gel synthesis consists of the hydrolysis and condensation in acidic conditions of the inorganic network. Epoxy polymerization has been achieved by using zirconium or BF3 alkoxides precursors. Bulk and multilayer materials doped with a fullerene derivative have been fabricated. They show good optical requirements: high fullerenes concentration, high microstructural homogeneity, high laser damage threshold and high optical limiting efficiency. Optical limiting (OL) mechanisms have been investigated. The most effective in the sol-gel materials is the reverse saturable absorption (RSA) one. However, different mechanisms, like non-linear (NL) scattering and NL refraction contribute to a different extent. Open- and closed-aperture OL and z-scan measurements on sol-gel samples show the contribution of NL scattering and NL refraction at 690 nm. Laser damage threshold has been characterized as a function of the structure of the samples and of the optical configurations (f/66 and f/5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Tutt and A. Kost, Nature 326, 225 (1992).

    Google Scholar 

  2. L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, A. Koskelo, M. Grigorova, B. Mattes, H. Wang, and F. Wudl, Opt. Lett. 21(13), 922 (1996).

    Google Scholar 

  3. Y.-P. Sun, J.E. Riggs, and B. Liu, Chem. Mater. 9, 1268 (1997).

    Google Scholar 

  4. S.V. Rao, D.N. Rao, J.A. Akkara, B.S. DeCristofano, and D.V.G.L.N. Rao, Chem. Phys. Lett. 297, 491 (1998).

    Google Scholar 

  5. J.R. Heflin, D. Marciu, C. Figura, S. Wang, R. Yordan, and J.C. Withers, SPIE 3146, 142 (1999).

    Google Scholar 

  6. R. Signorini, M. Zerbetto, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, E. Menegazzo, and M. Guglielmi, SPIE, 2854, 130 (1996).

    Google Scholar 

  7. R.V. Bensasson, T. Hill, C. Lambert, E.J. Land, S. Leach, and T.G. Truscott, Chem. Phys. Lett. 201(1–4), 326 (1993).

    Google Scholar 

  8. A. Kost, L. Tutt, M.B. Klein, T.K. Dougherty, and W.E. Elias, Opt. Lett. 18(5), 334 (1993).

    Google Scholar 

  9. L. Smilowitz, D. McBranch, V. Kilmov, M. Grigorova, J.M. Robinson, B.J. Weyer, A. Koskelo, B.R. Mattes, H. Wang, and F. Wudl, Synt. Met. 84, 931 (1997).

    Google Scholar 

  10. F. Bentivegna, M. Canva, P. Georges, A. Brun, F. Chaput, L. Malier, and JP. Boilot, Appl. Phys. Lett. 62(15), 1721 (1993); M. Brunel, F. Le-Luyer, M. Canva, A. Brun, F. Chaput, L. Malier, and J.-P. Boilot, Appl. Phys. B 58 (6), 443 (1994).

    Google Scholar 

  11. J.L. Anderson, Y.-Z. An, Y. Rubin, and C.S. Foot, J. Am. Chem. Soc. 116, 9763 (1994).

    Google Scholar 

  12. R.V. Bensasson, E. Bienvenue, J.-M. Janot, S. Leach, P. Seta, D.I. Schuster, S.R. Wilson, and H. Zhao, Chem. Phys. Lett. 245, 566 (1995).

    Google Scholar 

  13. R. Signorini, M. Zerbetto, M. Meneghetti, R. Bozio, M. Maggini, C. DeFaveri, M. Prato, and G. Scorrano, Chem. Comm. 16, 1891 (1996).

    Google Scholar 

  14. M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Gulielmi, A. Renier, R. Signorini, M. Meneghetti, and R. Bozio, Adv. Mat. 7(4), 404 (1995).

    Google Scholar 

  15. G. Brusatin, P. Innocenzi, M. Guglielmi, R. Bozio, M. Meneghetti, R. Signorini, M. Maggini, G. Scorrano, and M. Prato, SPIE 3803, 90 (1999).

    Google Scholar 

  16. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, and M. Guglielmi, Carbon 38, 1653 (2000).

    Google Scholar 

  17. F. Henari, J. Callaghan, H. Stiel, W. Blau, and D.J. Cardin, Chem. Phys. Lett. 199(1,2), 144 (1992).

    Google Scholar 

  18. R. Signorini, S. Sartori, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, and M. Guglielmi, Nonlinear Optics 21, 143 (1999).

    Google Scholar 

  19. M. Maggini, G. Scorrano, and M. Prato, J. Am. Chem. Soc. 115, 9798 (1993).

    Google Scholar 

  20. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum El. 26, 760 (1990).

    Google Scholar 

  21. R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York).

  22. T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Van Stryland, J.W. Perry, and D.R. Coulter, Appl. Phys. B 54, 46 (1992).

    Google Scholar 

  23. M. Maggini, C. De Faveri, G. Scorrano, M. Prato, G. Brusatin, M. Guglielmi, M. Meneghetti, R. Signorini, and R. Bozio, Chem. Eur. J. 5(9), 2501 (1999).

    Google Scholar 

  24. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, and M. Guglielmi, in Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena and Application, edited by F. Kajzar and V.M. Agranovich, NATO ASI Series (1999), p. 83.

  25. P.A. Miles, Appl. Opt. 33, 6965 (1994).

    Google Scholar 

  26. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, and M. Guglielmi, Non Linear Optics (2001), pp. 193–208.

  27. M. Sheik-Bahae, A.A. Said, D.J. Hagan, and E.W. Van Stryland, Opt. Eng. 30, 1228 (1990).

    Google Scholar 

  28. J.A. Herman and R.G. McDuff, J. Opt. Soc.Am. 10, 2056 (1993).

    Google Scholar 

  29. J.-G. Tian, W.-P. Zang, C.-Z. Zhang, G. Zhang, et al., Appl. Opt. 34(21), 4331 (1995).

    Google Scholar 

  30. G. Brusatin, P. Innocenzi, M. Guglielmi, R. Bozio, M. Meneghetti, R. Signorini, M. Maggini, G. Scorrano, and M. Prato, In SPIE Proceedings, Materials and Devices for Photonic Circuits III (1999), vol. 3803, p. 90.

    Google Scholar 

  31. G. Brusatin, P. Innocenzi, M. Guglielmi R. Signorini, and R. Bozio, Non Linear Optics (2001), pp. 259–267.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Signorini, R., Meneghetti, M., Bozio, R. et al. Fullerene Derivatives Embedded in Hybrid Sol-Gel Glasses: Nonlinear Optical Properties and Optical Limiting Performances. Journal of Sol-Gel Science and Technology 22, 245–253 (2001). https://doi.org/10.1023/A:1012252103998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012252103998

Navigation