Skip to main content
Log in

Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The brain-blood partition coefficient (logBB) is a determining factor for the efficacy of central nervous system acting drugs. Since large-scale experimental determination of logBB is unfeasible, alternative evaluation methods based on theoretical models are desirable. Toward this direction, we propose a model that correlates logBB with physically significant descriptors for 76 structurally diverse molecules. We employ Monte Carlo simulations of the compounds in water to calculate such properties as the solvent-accessible surface area (SASA), the number of hydrogen bond donors and acceptors, the solute dipole, and the hydrophilic, hydrophobic and amphiphilic components of SASA. The physically significant descriptors are identified and a quantitative structure-prediction relationship is constructed that predicts logBB. This work demonstrates that computer simulations can be employed in a semi-empirical framework to build predictive QSPRs that shed light on the physical mechanism of biomolecular phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. De Vries, H.E., Kuiper, J., De Boer, A.G., Van Berkel, T.J.C., and Breimer, D.D., Pharmacol. Rev., 49 (1997) 143.

    Google Scholar 

  2. Tamai, I., Tsuji, A., Adv. Drug Delivery Rev., 19 (1996) 401.

    Google Scholar 

  3. Young, R.C., Mitchell, R.C., Brown, T.H., Ganellin, C.R., Griffiths, R., Jones, M., Rana, K.K., Saunders, D., Smith, I.R., Sore, N.E., and Wilks, T.J., J. Med. Chem., 31 (1988) 656.

    Google Scholar 

  4. Eddy, E.P., Maleef, B.E., Hart, T.K., and Smith, P.L., Adv. Drug Deliv. Rev., 23 (1997) 185.

    Google Scholar 

  5. Reichel, A., and Begley, D.J., Pharm. Res., 15 (1998) 1270.

    Google Scholar 

  6. Seiler, P., Eur. J. Med. Chem., 9 (1974) 473.

    Google Scholar 

  7. el Tayar, N., Tsai, R.S., Testa, B., Carrupt, P. A., and Leo, A., J. Pharm. Sci., 80 (1991) 590.

    Google Scholar 

  8. Fischer, H., Gottschlich, R., and Seelig, A., J. Membrane Biol., 165 (1998) 201.

    Google Scholar 

  9. Seelig, A., Gottschlich, R., and Devant, R.M.A., Proc. Natl. Acad. Sci. USA, 91 (1994) 68.

    Google Scholar 

  10. Kelder, J., Grootenhuis, P.D., Bayada, D.M., Delbressine, L.P., and Ploemen, J.P., Pharm Res., 16 (1999) 1514.

    Google Scholar 

  11. van de Waterbeemd, H., and Kansy, D., Chimia, 46 (1992) 299.

    Google Scholar 

  12. Calder, J.A., and Ganellin, C.R., Drug Des. Discov., 11 (1994) 259.

    Google Scholar 

  13. Abraham, M.H., Chadha, H.S., and Mitchell, R.C., J. Pharm. Sci., 83 (1994) 1257.

    Google Scholar 

  14. Abraham, M.H., and McGowan, J.C., Chromatographia, 23 (1987) 243.

    Google Scholar 

  15. Abraham, M.H., Chadha, H.S., and Mitchell, R.C., Drug Des. Discov., 13 (1995) 123.

    Google Scholar 

  16. Lombardo, F., Blake, J.F., and Curatolo, W.J., J. Med. Chem., 39 (1996) 4750.

    Google Scholar 

  17. Kaliszan, R., and Markuszewski, M., Int. J. of Pharmaceutics, 145 (1996) 9.

    Google Scholar 

  18. Norinder, U., Sjoberg, P., and Osterberg, T., J. Pharm. Sci., 87 (1998) 952.

    Google Scholar 

  19. Sjoberg, P., In van de Waterbeemd, H., Testa, B., and Folkers, G. (Eds): Computer-Assisted Lead Finding and Optimization, Verlag Helvetica Chimica Acta, CH-4010 Basel, Switzerland, 1997, pp. 83-92.

    Google Scholar 

  20. Wold, S., Johansson, E., Cocchi, M., In Kubinyi, H. (ed.), 3D QSPR in Drug Design, ESCOM, Leiden 1993, pp. 523-550.

    Google Scholar 

  21. Jolliffe, I.T. Principal Component Analysis in Chemistry, Springer-Verlag, New York, 1986.

    Google Scholar 

  22. Luco, J.M., J Chem Inf Comput Sci., 39 (1999) 396.

    Google Scholar 

  23. Feher, M., Sourial, S., and Schmidt, J.M., Int. J. of Pharmaceutics, 201 (2000) 239.

    Google Scholar 

  24. Clark, D.E., J. Pharm. Sci. 88 (1999) 815.

    Google Scholar 

  25. Bassolino-Klimas, D., Alper, H.E., and Stouch, T.R., Biochemistry, 32 (1993) 12624.

    Google Scholar 

  26. Jin, B., and Hopfinger, A.J., Pharm Res. 13 (1996) 1786.

    Google Scholar 

  27. Jorgensen W.L, and Duffy E.M., Bioorg. Med. Chem. Lett., 10 (2000) 1155.

    Google Scholar 

  28. Duffy, E.M., and Jorgensen, W.L., J. Am. Chem. Soc., 122 (2000) 2878.

    Google Scholar 

  29. Weininger, D., J. Chem. Inf. Comp. Sci., 28 (1988) 31.

    Google Scholar 

  30. Sybyl 6.4.2. Tripos Inc. 1699 S, Hanley Rd., Suite 303, St. Louis, MO 63144-2913.

  31. Jorgensen W.L, In Schleyer, V. R. (ed.), Encyclopedia of Computational Chemistry, Wiley, New York, 1998, Vol. 5, pp. 3281-3285.

    Google Scholar 

  32. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 118 (1996) 11225.

    Google Scholar 

  33. Kaminski, G.A., and Jorgensen, W.L., J. Phys. Chem. B, 102 (1998) 1796.

    Google Scholar 

  34. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  35. Jorgensen, W.L., and Nguyen, T.B., J. Comput. Chem., 14 (1993) 195.

    Google Scholar 

  36. JMP, Version 3, SASA Institute Inc.: Cary, NC, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaznessis, Y.N., Snow, M.E. & Blankley, C.J. Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water. J Comput Aided Mol Des 15, 697–708 (2001). https://doi.org/10.1023/A:1012240703377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012240703377

Navigation