Skip to main content
Log in

Chemical Orientation of Brown Bullheads, Ameiurus nebulosus, Under Different Flow Conditions

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The spatiotemporal information in chemical signals provides critical information for organisms during chemical orientation. Information in chemical signals is influenced by the hydrodynamic conditions of the environment. Hydrodynamically distinct environments will contain different types of information, which will influence how organisms orient. This study was designed to examine how the orientation behavior of the brown bullhead (Ameiurus nebulosus) is influenced by flow regime. The experiment was conducted in a flume under two different flow conditions. Treatments consisted of control (no odor) and plain gelatin (odor). Percent success, swimming speed, turning angle, heading angle, heading angle upstream, and net-to-gross ratio were analyzed. Brown bullheads were 100% successful in finding the odor source under no flow and 57% successful in flow. Bullheads swam differently in the no-flow condition when compared to the flow condition. Since, these fish did not orient the same under different flow conditions, it appears that hydrodynamics plays a role in shaping their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ABLE, K. P. 1991. Common themes and variations in animal orientation systems. Am. Zool. 31:157–167.

    Google Scholar 

  • ATEMA, J. 1971. Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav. Evol. 4:273–294.

    Google Scholar 

  • ATEMA, J. 1988. Distribution of chemical stimuli, pp. 3–28, in Sensory Biology of Aquatic Animals. J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). Springer-Verlag, New York.

    Google Scholar 

  • ATEMA, J. 1995. Chemical signals in the marine environment: Dispersal, detection, and temporal signal analysis. Proc. Natl. Acad. Sci. USA 92:62–66.

    Google Scholar 

  • ATEMA, J., HOLLAND, K., and IKEHARA, W. 1980. Olfactory Responses of yellowfin tuna (Thunnus albacares) to prey odors: chemical search image. J. Chem. Ecol. 6:457–465.

    Google Scholar 

  • BARDACH, J. E. and CASE, J. 1965. Sensory capabilities of the modified fins of squirrel hake (Urophycis chuss) and sea robins (Prionotus carolinus and P. evolans). Copiea 2:194–206.

    Google Scholar 

  • BARDACH, J. E. and TODD, J. H. 1970. Chemical communication in fish, pp. 205–240, in J. Johnsten, Jr., D. G. Moulton, and A. Turk (eds.). Advances in Chemoreception, Vol. 1. Appleton Century Crofts, New York.

    Google Scholar 

  • BARDACH, J. E., TODD, J. H., and CRICKMER, R. 1967. Orientation by taste in fish of the genus Ictalurus. Science 155:1276–1278.

    Google Scholar 

  • BARLOW, G. W. 1974. Contrasts in social behavior between Central American cichlid fishes and coral-reef surgeon fishes. Am. Zool. 14:9–34.

    Google Scholar 

  • BELANGER, J. H. and ARBAS, E. A. 1998. Behavioral strategies underlying pheromone-modulated flight in moths: Lessons from simulation studies. J. Comp. Physiol. A. 183:345–360.

    Google Scholar 

  • BOHIDAR, H. B. 1998. Hydrodynamic properties of gelatin in dilute solutions. Int. J. Biol. Macromolec. 23:1–6.

    Google Scholar 

  • BRADBURY, J. W. and VEHRENCAMP, S. L. 1998. Principles of Animal Communication. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • BREITHAUPT, T. and ATEMA, J. 1993. Evidence for the use of urine signals in agnostic interactions of the American lobster. Biol. Bull. 185:318.

    Google Scholar 

  • BUENTELLO, J. A. and GATLIN, D. M., III. 2000. The dietary arginine requirements of channel cat-fish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 188:311–321.

    Google Scholar 

  • BURSELL, E. 1984. Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physiol. Entomol. 9:133–137.

    Google Scholar 

  • CAPRIO, J. and BYRD, R. P., JR. 1984. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish. J. Gen. Physiol. 84:403–422.

    Google Scholar 

  • CAPRIO, J. and RADERMAN-LITTLE, R. 1978. Scanning electron microscopy of the channel catfish olfactory lamellae. Tissue Cell 10:1–9.

    Google Scholar 

  • CAPRIO, J., DUDEK, J., and ROBINSON, J. J., II. 1989. Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. Gen. Physiol. 93:245–262.

    Google Scholar 

  • CAPRIO, J., BRAND, J. G., TEETER, J. H., VALENTINCIC, T., KALINOSKI, D. L., KOHBARA, J., KUMAZAWA, T., and WEGERT, S. 1993. The taste system of the channel catfish: From biophysics to behavior. TINS 16:192–196.

    Google Scholar 

  • CARR, W. E. S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–28, in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Google Scholar 

  • CARR, W. E. S., NETHERTON III, J. C., GLEESON, R. A., and DERBY, C. D. 1996. Stimulants of feeding behavior in fish: Analyses of tissues of diverse marine organisms. Biol. Bull. 190:149–160.

    Google Scholar 

  • CHIVERS, D. P. and SMITH, R. J. F. 1993. The role of olfaction in chemosensory-based predator recognition in the fathead minnow, Pimephales promelas. J. Chem. Ecol. 19:623–633.

    Google Scholar 

  • CHIVERS, D. P., BROWN, G. E., and SMITH, R. J. F. 1996. The evolution of chemical alarm signals: Attracting predators benefits alarm signal senders. Am. Nat. 148:649–659.

    Google Scholar 

  • CROLL, R. P. and CHASE, R. 1980. Plasticity of olfactory orientation to foods in the snail Achatina fulica. J. Comp. Physiol. 136A:267–277.

    Google Scholar 

  • ELLINGSEN, O. F. and DøVING, K. B. 1986. Chemical fractionation of shrimp extracts inducing bottom food search behavior in cod (Gadus morhua L.). J. Chem. Ecol. 12:155–168.

    Google Scholar 

  • ENDLER, J. A. 1995. Multiple-trait coevolution and environmental gradients in guppies. TREE 10: 22–29.

    Google Scholar 

  • ENDLER, J. A. and BASOLO, A. L. 1998. Sensory ecology, receiver biases and sexual selection. TREE 13:415–420.

    Google Scholar 

  • ERIKSSON, L.-O. 1978. Diurnalism versus nocturnalism-dualism within fish individuals, pp. 69–89, in J. E. Thorpe (ed.). Rhythmic Activity of Fishes. Academic Press, New York.

    Google Scholar 

  • ERIKSSON, L.-O. and Van VEEN, T. 1980. Circadian rhythms in the brown bullhead, Ictalurus nebulosus (Teleosti). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behavior. Can. J. Zool. 58:1899–1907.

    Google Scholar 

  • FINELLI, C. M., PENTCHEFF, N. D., ZIMMER-FAUST, R. K., and WETHEY, D. S. 1999. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44:1056–1071.

    Google Scholar 

  • GIAQUINTO, P. C. and VOLPATO, G. L. 1997. Chemical communication, aggression, and conspecific recognition in the fish Nile tilapia. Physiol. Behav. 62:1333–1338.

    Google Scholar 

  • HAZLETT, B. 1994. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. J. Chem. Ecol. 20:2623–2630.

    Google Scholar 

  • HUBER, R., Van STAADEN, M. J., KAUFMAN, L. S., and LIEM, K. F. 1997. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav. Evol. 50:167–182.

    Google Scholar 

  • IVanOVA, T. T. and CAPRIO, J. 1993. Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus. J. Gen. Physiol. 102:1085–1105.

    Google Scholar 

  • JOHNSEN, P. B. and TEETER, J. H. 1980. Spatial gradient of chemical cues by catfish. J. Comp. Physiol. 140:95–99.

    Google Scholar 

  • KANG, J. and CAPRIO, J. 1991. Electro-olfactogram and multiunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish Ictalurus punctatus. J. Gen. Physiol. 98:699–721.

    Google Scholar 

  • KANWAL, J. S. and FINGER, T. E. 1997. Parallel medullary gustatospinal pathways in a catfish: Possible neural substrates for taste-mediated food search. J. Neurosci. 17:4873–4885.

    Google Scholar 

  • KEEN, W. H. 1982. Behavioral interactions and body size differences in competition for food among juvenile brown bullhead (Ictalurus nebulosus). Can. J. Fish. Aquat. Sci. 39:316–320.

    Google Scholar 

  • KENNEDY, J. S. 1986. Some current issues in orientation to odour sources, pp. 11–25, in T. L. Payne, M. C. Birch, and C. E. J. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.

    Google Scholar 

  • KIESECKER, J. M., CHIVERS, D. P., and BLAUSTEIN, A. R. 1996. The use of chemical cues in predator recognition by western toad tadpoles. Anim. Behav. 52:1237–1245.

    Google Scholar 

  • KOTRSCHAL, K., Van STAADEN, M. J., and HUBER, R. 1998. Fish brains: Evolution and environmental relationships. Rev. Fish Biol. Fish. 8:373–408.

    Google Scholar 

  • LAND, M. F., GIBSON, G., HORWOOD, J., and ZEIL, J. 1999. Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes. J. Comp. Physiol. A. 185:91–103.

    Google Scholar 

  • LEWIS, D. B. and GOWER, D. M. 1980. Biology of Communication. John Wiley & Sons, New York.

    Google Scholar 

  • LüPKE, M. and BRüCKNER, H. 1998. Gas chromatographic evaluation of amino acid epimerisation in the course of gelatin manufacturing and processing. Z Lebensm. Unters. Forsch. A 206:323–328.

    Google Scholar 

  • MAFRA-NETO, A. and CARDé, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    Google Scholar 

  • MAFRA-NETO, A. and CARDé, R. T. 1998. Rate of realized interception of pheromone pulses in different wind speeds. modulates almond moth orientation. J. Comp. Physiol. A 18:563–572.

    Google Scholar 

  • MASON, R. T., FALES, H. M., JONES, T. H., PANNEL, L. K, CHINN, J. W., and CREWS, D. 1989. Sex pheromones in snakes. Science 245:290–293.

    Google Scholar 

  • MIYAMOTO, T., RESTREPO, D., and TEETER, J. H. 1990. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 249:1167–1168.

    Google Scholar 

  • MOORE, P. A. and ATEMA, J. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • MOORE, P. A. and GRILLS, J. 1999. Chemical orientation to food by the crayfish, Orconectes rusticus: Influence by hydrodynamics. Anim. Behav. 58:953–963.

    Google Scholar 

  • MOORE, P. A. and LEPPER, D. 1997. Role of chemical signals in the orientation behavior of the sea star Asterias forbesi. Biol. Bull. 192:410–417.

    Google Scholar 

  • MOORE, P. A., ATEMA, J., and GERHARDT, G. A. 1991. Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus. Chem. Senses 16:663–674.

    Google Scholar 

  • MOORE, P. A., WEISSBURG, M. J., PARRISH, J. M., ZIMMER-FAUST, R. K., and GERHARDT, G. A. 1994. Spatial distribution of odors in simulated benthic boundary layer flows. J. Chem. Ecol. 20:255–279.

    Google Scholar 

  • MOORE, P. A., GRILLS, J. L., and SCHNEIDER, R. W. S. 2000. Habitat-specific signal structure for olfaction: An example from artificial streams. J. Chem. Ecol. 26:565–584.

    Google Scholar 

  • MURLIS, J. 1986. The structure of odor plumes, pp. 27–38, in T. L. Payne, M. C. Birch, and C. E. J. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.

    Google Scholar 

  • MURLIS, J. 1987. Odor plumes and the signals they provide, pp. 221–231, in R. T. Cardé and A. K. Minks (eds.). Pheromone Research: New Directions. Chapman and Hall, New York.

    Google Scholar 

  • MURLIS, J. and JONES, C. D. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.

    Google Scholar 

  • MURLIS, J., ELKINTON, J. S., and CARDé, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.

    Google Scholar 

  • NEVITT, G. A. 1991. Do fish sniff? A new mechanism of olfactory sampling in pleuronectid flounders. J. Exp. Biol. 157:1–18.

    Google Scholar 

  • PARKER, G. H. 1912. The directive influence of the sense of smell in the dogfish. Bull. US Bur. Fish. 32:35–46.

    Google Scholar 

  • PERSONS, M. H., FLEISHMAN, L. J., FRYE, M. A., and STIMPHIL, M. E. 1999. Sensory response patterns and the evolution of visual signal design in anoline lizards. J. Comp. Physiol. A 184:585–607.

    Google Scholar 

  • PFLIEGER, W. L. 1975. The Fishes of Missouri. Missouri Department of Conservation, Missouri.

    Google Scholar 

  • POLING, K. R. and FUIMAN, L. A. 1999. Behavioral specialization in developing sciaenids and its relationship to morphology and habitat. Environ. Biol. Fish. 54:119–133.

    Google Scholar 

  • RASMUSSEN, L. E. L. and SCHULTE, B. A. 1998. Chemical signals in the reproduction of Asian (Elephas maximus) and African (Loxodonta africana) elephants. Anim. Reprod. Sci. 53:19–34.

    Google Scholar 

  • RESTREPO, D., MIYAMOTO, T., BRYANT, B. P., and TEETER, J. H. 1990. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 249:1167–1168.

    Google Scholar 

  • SARWAR, G. and RATNAYAKE, W. M. N. 2000. Effects of amino acid supplementation of dietary proteins on serum cholesterol and fatty acids in rats. Nutr. Res. 20:665–674.

    Google Scholar 

  • SCHNEIDER, R. W. S. and MOORE, P. A. 2000. The physics of chemoreception revisted: How the environment influences chemically mediated behavior, pp. 159–176, in P. Domenici and R. W. Blake (eds.). Biomechanics in Animal Behavior. BIOS Scientific Publishers Ltd., Oxford.

    Google Scholar 

  • SCHNEIDER, R. W. S., PRICE, B. A., and MOORE, P. A. 1998. Antennal morphology as a physical filter of olfaction: Temporal tuning of the antennae of the honeybee, Apis mellifera. J. Insect. Physiol. 44:677–684.

    Google Scholar 

  • SCHWENK, K. 1995. Of tongues and noses: Chemoreception in lizards and snakes. TREE 10:7–12.

    Google Scholar 

  • SMITH, M. E. 2000. Alarm response of Arius felis to chemical stimuli from injured conspecifics. J. Chem. Ecol. 26:1635–1647.

    Google Scholar 

  • SORENSEN, P. W., STACEY, N. E., and CHAMBERLAIN, K. J. 1989. Differing behavioral and endocrinological effects of two female sex pheromones on male goldfish. Horm. Behav. 23:317–332.

    Google Scholar 

  • SORENSEN, P. W. and SCOTT, A. P. 1994. The evolution of hormonal sex pheromones in teleost fish: Poor correlation between the pattern of steroid release by goldfish and olfactory sensitivity suggests that these cues evolved as a result of chemical spying rather than signal specialization. Acta Phys. Scand. 152:191–205.

    Google Scholar 

  • STABELL, O. B. 1992. Olfactory control of homing behavior in Salmonids, pp. 249–270, in T. J. Hara (ed.). Fish Chemoreception. Chapman & Hall, New York.

    Google Scholar 

  • SWAISGOOD, R. R., LINDBURG, D. G., and ZHOU, X. 1999. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57:1045–1053.

    Google Scholar 

  • TAKKEN, W., DEKKER, T., and WIJNHOLDS, Y. G. 1997. Odor-mediated flight behavior of Anopheles gambiae Giles sensu stricto and An. stephensi Liston in responses to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J. Insect. Behav. 10:395–407.

    Google Scholar 

  • TAVOLGA, W. A. 1956. Visual, chemical, and sound stimulus as cues in the sex discriminatory behavior of the gobiid fish, Bathygobius soporator. Physiol. Zool. 31:259–271.

    Google Scholar 

  • TIERNEY, A. J. and ATEMA, J. 1988. Behavioral responses of crayfish (Orconectes virilis and Orconectes rusticus) to chemical feeding stimulants. J. Chem. Ecol. 14:123–133.

    Google Scholar 

  • TOSI, L. and SOLA, C. 1993. Bile salts and taurine as chemical stimuli for glass eels, Anguilla anguilla: A behavioral study. Environ. Biol. Fish 37:197–204.

    Google Scholar 

  • VALENTINČIČ, T. and CAPRIO, J. 1994. Consummatory feeding behavior to amino acids in intact and anosmic channel catfish Ictalurus punctatus. Physiol. Behav. 55:857–863.

    Google Scholar 

  • VALENTINČIČ, T., WEGERT, S., and CAPRIO, J. 1994. Learned olfactory discrimination versus innate taste responses to amino acids in channel catfish (Ictalurus punctatus). Physiol. Behav. 55:865–873.

    Google Scholar 

  • Van DER STEEN, W. J. and TER MAAT, A. 1979. Theoretical studies on animal orientation I. Methodological appraisal of classifications. J. Theor. Biol. 79:223–234.

    Google Scholar 

  • VICKERS, N. J. 2000. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198:203–212.

    Google Scholar 

  • VICKERS, N. J. and BAKER, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91:5756–5760.

    Google Scholar 

  • WEHNER, R. 1987. Matched filters-neural models of models of the external world. J. Comp. Physiol. A 161:511–531.

    Google Scholar 

  • WEISSBURG, M. J. 1997. Chemo-and mechanosensory orientation by crustaceans in laminar and turbulent flows: From odor trails to vortex streets, pp. 215–246, in M. Lehrer (ed.). Orientation and Communication in Arthropods. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • WEISSBURG, M. J. and ZIMMER-FAUST, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • WEISSBURG, M. J. and ZIMMER-FAUST, R. K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol. 197:349–375.

    Google Scholar 

  • WILLIS, M. A. and ARBAS, E. A. 1998. Variability in odor-modulated flight by moths. J. Comp. Physiol. A 182:191–202.

    Google Scholar 

  • ZIMMER-FAUST, R. K., FINELLI, C. M., PENTCHEFF, N. D., and WETHEY, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: A field study. Biol. Bull. 188:111–116.

    Google Scholar 

  • ZIPPEL, H. P., SORENSON, P. W., and HANSEN, A. 1997. High correlation between microvillous olfactory receptor cell abundance and sensitivity to pheromones in olfactory nerve-sectioned goldfish. J. Comp. Physiol. A 180:39–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, M.L., Moore, P.A. Chemical Orientation of Brown Bullheads, Ameiurus nebulosus, Under Different Flow Conditions. J Chem Ecol 27, 2301–2318 (2001). https://doi.org/10.1023/A:1012239222761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012239222761

Navigation