Skip to main content
Log in

Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A collection of nitrile-hydrolysing rhodococci was isolated from sediments sampled from a range of deep coastal, and abyssal and hadal trench sites in the NW Pacific Ocean, as part of our programme on the diversity of marine actinomycetes. Nitrile-hydrolysing strains were obtained by batch enrichments on nitrile substrates with or without dispersion and differential centrifugation pre-treatment of sediments, and were recovered from all of the depths sampled (approximately 1100–6500 m). Two isolates obtained from the Ryukyu (5425 m) and Japan (6475 m) Trenches, and identified as strains of Rhodococcus erythropolis,were chosen for detailed study. Both of the deep-sea isolates grew at in situ temperature (4°C), salinities (0–4% NaCl) and pressures (40–60 MPa), results that suggest, but do not prove, that they may be indigenous marine bacteria. However, the absence of culturable Thermoactinomycespoints to little or no run off of terrestrial microbiota into these particular trench sediments. Nitrile-hydrolysis by these rhodococci was catalysed by a nitrile hydratase–amidase system. The hydratase accommodated aliphatic, aromatic and dinitrile substrates, and enabled growth to occur on a much wider range of nitriles than the only other reported marine nitrile-hydrolysing R. erythropolis which was isolated from coastal sediments. Also unlike the latter strain, the nitrile hydratases of the deep-sea rhodococci were constitutive. The possession of novel growth and enzyme activities on nitriles by these deep-sea R. erythropolisstrains recommends their further development as industrial biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarant T, Vered Y & Bohak Z (1989) Substrates and inhibitors of the nitrile hydratase and amidase of Corynebacterium nitrilophilus. Biotechnol. Appl. Biochem. 11: 49-59.

    Google Scholar 

  • Attwell RW & Colwell RR (1984) Thermoactinomycetes as terrestrial indicators for marine and estuarine waters. In: Ortiz-Ortiz LL, Bojalil LF & Yakoleff V (Eds) Biological, Biochemical and Biomedical Aspects of Actinomycetes (pp 441-452). Academic Press, Orlando, FL.

    Google Scholar 

  • Bernan VS, Greenstein M & Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv. Appl. Microbiol. 43: 57-90.

    Google Scholar 

  • Blakey AJ, Colby J, Williams E & Oreilly C (1995) Regio-specific and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol. Lett. 129: 57-61.

    Google Scholar 

  • Bull AT, Goodfellow M & Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu. Rev. Microbiol. 46: 219-252.

    Google Scholar 

  • Bull AT, Bunch AW & Robinson GK (1999) Biocatalysts for clean industrial products and processes. Curr. Opin. Microbiol. 2: 246-251.

    Google Scholar 

  • Bull AT, Ward AC & Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573-606.

    Google Scholar 

  • Chaney AL & Marbach EP (1962) Modified reagents for the determination of urea and ammonia. Clin. Chem. 8: 130-132.

    Google Scholar 

  • Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K & Bull AT (1998a) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2: 269-277.

    Google Scholar 

  • Colquhoun JA, Mexson J, Goodfellow M, Ward AC, Horikoshi K & Bull AT (1998b) Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74: 27-40.

    Google Scholar 

  • Colquhoun JA, Zulu J, Goodfellow M, Horikoshi K, Ward AC & Bull AT (2000) Rapid characterisation of deep-sea actinomycetes for biotechnology screening programs. Antonie van Leeuwenhoek<nt>ti</nt></del> 77: 359-367.

    Google Scholar 

  • Cramp R, Gilmour M & Cowan DA (1997) Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiol. UK 143: 2313-2320.

    Google Scholar 

  • Crosby J, Moilliet J, Parratt JS & Turner NJ (1994) Regioselective hydrolysis of aromatic dinitriles using a whole cell catalyst. J. Chem. Soc. Perkin Trans. 1: 1679-1687.

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685-5689.

    Google Scholar 

  • Deming JW (1998) Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9: 283-287.

    Google Scholar 

  • Endo I & Watanabe I (1989) Nitrile hydratase of Rhodococcus sp. N-774-purification and amino acid sequences. FEBS Lett. 243: 61-64.

    Google Scholar 

  • Faulkner DJ (2000) Marine pharmacology. Antonie van Leeuwenhoek 77: 135-145.

    Google Scholar 

  • Flemming FF (1999) Nitrile-containing natural products. Nat. Prod. Rep. 16: 597-606.

    Google Scholar 

  • Franzman PD (1996) Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodivers. Conserv. 5: 1295-1305.

    Google Scholar 

  • Goodfellow M, Alderson G & Chun J (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 74: 3-20.

    Google Scholar 

  • Harper DB (1977) Microbial metabolism of aromatic nitriles, enzymology of C-N cleavage by Nocardia sp. (Rhodococcus group) NCIB 11216. Biochem. J. 165: 309-319.

    Google Scholar 

  • Helmke E (1981) Growth of actinomycetes from marine and terrestrial origin under increased hydrostatic pressure. Zbl. Bakteriol. Suppl. 11: 321-327.

    Google Scholar 

  • Helmke E & Weyland H (1984) Rhodococcus marinonascens, an actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127-138.

    Google Scholar 

  • Hopkins DW, Macnaughton SJ & O'Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol. Biochem. 23: 217-225.

    Google Scholar 

  • Ingvorsen K, Yde B, Godtfredsen SE & Tsuchiya RT (1988) Microbial hydrolysis of organic nitriles and amides. CIBA Found. Symp. 140: 16-31.

    Google Scholar 

  • Jollivett D (1996) Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodivers. Conserv. 5: 1619-1653.

    Google Scholar 

  • Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J & Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64: 1510-1513.

    Google Scholar 

  • Kato C, Li L, Tamaoha J & Horikoshi K (1997) Molecular analyses of the sediment of the 11 000-m deep Mariana Trench. Extremophiles 1: 117-123.

    Google Scholar 

  • King J & Laemmli UK (1971) Polypeptides of the tail fibres of bacteriophage T4. J. Mol. Microbiol. 62: 465-477.

    Google Scholar 

  • Knowles CJ & Wyatt JW (1992) The degradation of cyanide and nitriles. In: Fry JC, Gadd GM, Herbert RA, Jones CW & Watson-Craik IA (Eds) Microbial Control of Pollution (pp 113-128). Cambridge University Press, Cambridge.

    Google Scholar 

  • Langdahl BR, Bisp P & Ingvorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiol. UK 142: 145-154.

    Google Scholar 

  • Li L, Kato C & Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8: 659-677.

    Google Scholar 

  • Liese A, Seelbach K & Wandrey C (2000) Industrial Biotransformations. Wiley-VCH, Weinheim.

    Google Scholar 

  • Linton EA & Knowles CJ (1986) Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100-21. J. Gen. Microbiol. 132: 1493-1501.

    Google Scholar 

  • MacLeod RA (1965) The questions of the existence of specific marine bacteria. Bacteriol. Rev. 29: 9-23.

    Google Scholar 

  • Minnikin DE (1988). Isolation and purification of mycobacterial cell wall lipids. In: I. C. Hancock & I. C. Poxton (Eds) Bacterial Cell Surface Techniques (pp 95-184). John Wiley and Sons, Winchester.

    Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv. Microbial Ecol. 6: 171-198.

    Google Scholar 

  • Nagasawa T, Tekeuchi K & Yamada H (1988) Occurrence of a cobalt containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem. Biophys. Res. Commun. 155: 1008-1016.

    Google Scholar 

  • Nagasawa T, Takeuchi K, Nardi-Dei V, Mihara Y & Yamada H (1991) Optimum culture conditions for the production of cobaltcontaining nitrile hydratase by Rhodococcus rhodochrous J1. Appl. Microbiol. Biotechnol. 34: 783-788.

    Google Scholar 

  • O'Grady D & Pembroke JT (1994) Isolation of a novel Agrobacterium spp. capable of degrading a range of nitrile compounds. Biotechnol. Lett. 16: 47-50.

    Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ & Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature (London) 371: 410-413.

    Google Scholar 

  • Pitcher DG, Saunders NA & Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8: 151-156.

    Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiol. UK 141: 523-528.

    Google Scholar 

  • Rochelle PA, Cragg BA, Fry JC, Parkes RJ & Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine-sediments by 16S ribosomal-RNA gene sequenceanalysis. FEMS Microbiol. Ecol. 15: 215-225.

    Google Scholar 

  • Staley JT & Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53: 189-215.

    Google Scholar 

  • Stott JFD & Herbert BN (1986) The effect of pressure and temperature on sulphate-reducing bacteria and the action of biocides in oil-field water injection systems. J. Appl. Bacteriol. 61: 57-66.

    Google Scholar 

  • Thompson LA, Knowles CJ, Linton EA & Wyatt JM (1988) Microbial biotransformations of nitriles. Chem. Britain (Sept.): 900-902.

  • Weightman AJ & Slater JH (1980) Selection of Pseudomonas putida strains with elevated dehalogenase activities by continuous culture growth on chlorinated alkanoic acids. J. Gen. Microbiol. 121: 187-193.

    Google Scholar 

  • Wolff T (1970) The concept of the hadal or ultra abyssal fauna. Deep-Sea Res. 17: 983-1003.

    Google Scholar 

  • Yamada H & Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem. 60: 1391-1400.

    Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49: 777-805.

    Google Scholar 

  • Yoon J-H, Lee J-S, Shin YK, Park Y-H & Lee ST (1997) Reclassification of Nocardia simplex ATCC 13260, ATCC 19565, and ATCC 19566 as Rhodococcus erythropolis. Int. J. Syst. Bacteriol. 47: 904-907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Bull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heald, S.C., Brandão, P.F., Hardicre, R. et al. Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80, 169–183 (2001). https://doi.org/10.1023/A:1012227302373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012227302373

Navigation