Abstract
In this paper, we construct a parallel image of the conventional Maxwell theory by replacing the observer-time by the proper-time of the source. This formulation is mathematically, but not physically, equivalent to the conventional form. The change induces a new symmetry group which is distinct from, but closely related to the Lorentz group, and fixes the clock of the source for all observers. The new wave equation contains an additional term (dissipative), which arises instantaneously with acceleration. This shows that the origin of radiation reaction is not the action of a “charge” on itself but arises from inertial resistance to changes in motion. This dissipative term is equivalent to an effective mass so that classical radiation has both a massless and a massive part. Hence, at the local level the theory is one of particles and fields but there is no self-energy divergence (nor any of the other problems). We also show that, for any closed system of particles, there is a global inertial frame and unique (invariant) global proper-time (for each observer) from which to observe the system. This global clock is intrinsically related to the proper clocks of the individual particles and provides a unique definition of simultaneity for all events associated with the system. We suggest that this clock is the historical clock of Horwitz, Piron, and Fanchi. At this level, the theory is of the action-at-a-distance type and the absorption hypothesis of Wheeler and Feynman follows from global conservation of energy.
Similar content being viewed by others
REFERENCES
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II (Addison- Wesley, New York, 1974).
J. D. Jackson, Classical Electrodynamics, second edn. (Wiley, New York, 1975).
H. A. Lorentz, Archives Neerlandaises des Sciences Exactes et Naturelles 25, 353 (1892).
H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig, 1906; reprinted by Dover, New York, 1952).
A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).
D. E. Spencer and U. Y. Shama, Physics Essays 9, 476 (1996).
A. Einstein, Jahrbuch Radioaktivitat V, 422 (1907) (Berichtigungen).
H. Poincaré, C.R. Acad. Sci. (Paris) 140, 1504 (1905).
H. Minkowski, Physik. Z. 10, 104 (1909).
E. Whittaker, A History of Aether and Electricity, Vol. I (Nelson, London, 1951).
M. Dresden, in Renormalization: From Lorentz to Landau (and Beyond), L. M. Brown, ed. (Springer, New York, 1993).
M. H. L. Pryce, Proc. Roy. Soc. London A 195, 400 (1948).
P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
H. Leutwyler and J. Stern, Ann. Phys. (N.Y.) 112, 94 (1978).
B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).
D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963).
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (Wiley, New York, 1974).
R. Fong and J. Sucher, J. Math. Phys. 5, 456 (1964).
A. Peres, Symposia Mathematica 12, 61 (1973).
E. P. Wigner, in Aspects of Quantum Theory, in Honor of P. A. M. Dirac's 70th Birthday, A. Salam and E. P. Wigner, eds. (Cambridge University Press, London, 1972).
F. Rohrlich, Classical Charged Particles: Foundations of Their Theory (Addison- Wesley, Reading, Massachusetts, 1965).
S. Parrott, Relativistic Electrodynamics and Differential Geometry (Springer, New York, 1987).
F. Rohrlich, Am. J. Phys. 65, 1051 (1997).
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edn. (Addison- Wesley, Reading, Massachusetts, 1962).
J. A. Wheeler and R. P. Feynman, Rev. of Mod. Phys. 21, 425 (1949).
J. Schwinger, Found. Phys. 13, 2573 (1998).
M. Born and L. Infield, Proc. R. Soc. London A144, 425 (1934).
P. A. M. Dirac, Proc. R. Soc. London A167, 148 (1938).
F. Bopp, Ann. Phys. 42, 573 (1942).
N. Rosen, Phys. Rev. 72, 298 (1947).
B. Podolsky and P. Schwed, Rev. Mod. Phys. 20, 40 (1948).
R. P. Feynman, Phys. Rev. 74, 939 (1948).
R. Haag, Z. Naturf. 10a, 752 (1955).
S. Parrott and D. J. Endres, Found. Phys. 25, 441 (1995).
F. E. Low, Ann. Phys. (N.Y.) 266, 274 (1998).
A. A. Penzias and R. W. Wilson, Ap. J. 142, 419 (1965).
P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).
S. Schweber, QED and the Men Who Made It (Princeton University Press, Princeton, 1994).
B. French and V. Weisskopf, Phys. Rev. 75, 1240 (1949).
N. Kroll and W. Lamb, Phys. Rev. 75, 388 (1949).
P. A. M. Dirac, Sci. Amer. 208, 45 (1963).
T. P. Gill, The Doppler Effect (Logos, London, 1965).
G. A. Schott, Phil. Mag. 29, 49 (1915).
W. Ritz, Archives des Sciences Physiques et Naturelles 16, 209 (1908).
C. Moller, The Theory of Relativity (Clarendon, London, 1960).
C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover, New York, 1988).
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II (Wiley-Interscience, New York, 1965).
T. L. Gill and J. Lindesay, Int. J. Theor. Phys. 32, 2087 (1993).
T. L. Gill, Fermilab-Pub-82/60-THY.
J. P. Aparicio, F. H. Gaioli, and E. T. Garcia-Alvarez, Phys. Rev. A 51, 96 (1995).
J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993).
J. R. Fanchi, Found. Phys. 23, 487 (1993).
E. P. Wigner, Ann. Math. 40, 149 (1939).
G. L. Strobel, Int. J. Theor. Phys. 37, 2087 (1998).
T. L. Gill, W. W. Zachary, and J. Lindesay, Int. J. Theor. Physics 37, 2573 (1998).
P. A. M. Dirac, V. A. Fock, and B. Podolsky, Phys. Z. Sowj. Un. 2, 6 (1932); reprinted in J. Schwinger, ed. Selected Papers in Quantum Electrodynamics (Dover, New York, 1958).
F. Rohrlich and L. P. Horwitz, Phys. Rev. D 24, 1528 (1981).
G. Longhi, L. Lusanna, and J. M. Pons, J. Math. Phys. 30, 1893 (1989).
R. J. Hughes, Am. J. Phys. 60, 301 (1992).
L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1981).
F. Rohrlich, Phys. Rev. D 60, 084017 (1999).
E. C. G. Stückelberg, Helv. Phys. Acta 15, 23 (1942).
F. J. Dyson, Phys. Rev. D 75, 486, 1736 (1949).
G. W. Johnson and M. L. Lapidus, Mem. Am. Math. Soc. 62, 1 (1986).
T. L. Gill and W.W. Zachary, J. Math. Phys. 28, 1459 (1987).
G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus (Oxford University Press, New York, 2000).
H. Poincaré, Science and Hypothesis (Dover, New York, 1952).
A. Einstein, Ann. Phys. (Leipzig) 18, 639 (1905).
J. G. Fox, Am. J. Phys. 33, 1 (1965).
V. Bargmann and E. P. Wigner, Proc. Nat. Acad. Sci. 34, 211 (1948).
E. Schrödinger and L. Bass, Proc. R. Soc. London A232, 1 (1938).
A. Goldhaber and M. Nieto, Rev. Mod. Phys. 43, 277 (1971).
R. Jackiw, Comments Mod. Phys. 1A, 1 (1999).
A. I. Akhiezer and V. D. Berestetskii, Quantum Electrodynamics (Wiley-Interscience, New York, 1965).
R. V. Pound and J. L. Snider, Phys. Rev. 140, B788 (1965).
R. P. Feynman, Quantum Electrodynamics (Benjamin, New York, 1964).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gill, T.L., Zachary, W.W. & Lindesay, J. The Classical Electron Problem. Foundations of Physics 31, 1299–1355 (2001). https://doi.org/10.1023/A:1012222227710
Issue Date:
DOI: https://doi.org/10.1023/A:1012222227710