The Classical Electron Problem

Abstract

In this paper, we construct a parallel image of the conventional Maxwell theory by replacing the observer-time by the proper-time of the source. This formulation is mathematically, but not physically, equivalent to the conventional form. The change induces a new symmetry group which is distinct from, but closely related to the Lorentz group, and fixes the clock of the source for all observers. The new wave equation contains an additional term (dissipative), which arises instantaneously with acceleration. This shows that the origin of radiation reaction is not the action of a “charge” on itself but arises from inertial resistance to changes in motion. This dissipative term is equivalent to an effective mass so that classical radiation has both a massless and a massive part. Hence, at the local level the theory is one of particles and fields but there is no self-energy divergence (nor any of the other problems). We also show that, for any closed system of particles, there is a global inertial frame and unique (invariant) global proper-time (for each observer) from which to observe the system. This global clock is intrinsically related to the proper clocks of the individual particles and provides a unique definition of simultaneity for all events associated with the system. We suggest that this clock is the historical clock of Horwitz, Piron, and Fanchi. At this level, the theory is of the action-at-a-distance type and the absorption hypothesis of Wheeler and Feynman follows from global conservation of energy.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II (Addison- Wesley, New York, 1974).

    Google Scholar 

  2. 2.

    J. D. Jackson, Classical Electrodynamics, second edn. (Wiley, New York, 1975).

    Google Scholar 

  3. 3.

    H. A. Lorentz, Archives Neerlandaises des Sciences Exactes et Naturelles 25, 353 (1892).

    Google Scholar 

  4. 4.

    H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig, 1906; reprinted by Dover, New York, 1952).

    Google Scholar 

  5. 5.

    A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).

    Google Scholar 

  6. 6.

    D. E. Spencer and U. Y. Shama, Physics Essays 9, 476 (1996).

    Google Scholar 

  7. 7.

    A. Einstein, Jahrbuch Radioaktivitat V, 422 (1907) (Berichtigungen).

    Google Scholar 

  8. 8.

    H. Poincaré, C.R. Acad. Sci. (Paris) 140, 1504 (1905).

    Google Scholar 

  9. 9.

    H. Minkowski, Physik. Z. 10, 104 (1909).

    Google Scholar 

  10. 10.

    E. Whittaker, A History of Aether and Electricity, Vol. I (Nelson, London, 1951).

    Google Scholar 

  11. 11.

    M. Dresden, in Renormalization: From Lorentz to Landau (and Beyond), L. M. Brown, ed. (Springer, New York, 1993).

    Google Scholar 

  12. 12.

    M. H. L. Pryce, Proc. Roy. Soc. London A 195, 400 (1948).

    Google Scholar 

  13. 13.

    P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

    Google Scholar 

  14. 14.

    H. Leutwyler and J. Stern, Ann. Phys. (N.Y.) 112, 94 (1978).

    Google Scholar 

  15. 15.

    B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).

    Google Scholar 

  16. 16.

    D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963).

    Google Scholar 

  17. 17.

    E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (Wiley, New York, 1974).

    Google Scholar 

  18. 18.

    R. Fong and J. Sucher, J. Math. Phys. 5, 456 (1964).

    Google Scholar 

  19. 19.

    A. Peres, Symposia Mathematica 12, 61 (1973).

    Google Scholar 

  20. 20.

    E. P. Wigner, in Aspects of Quantum Theory, in Honor of P. A. M. Dirac's 70th Birthday, A. Salam and E. P. Wigner, eds. (Cambridge University Press, London, 1972).

    Google Scholar 

  21. 21.

    F. Rohrlich, Classical Charged Particles: Foundations of Their Theory (Addison- Wesley, Reading, Massachusetts, 1965).

    Google Scholar 

  22. 22.

    S. Parrott, Relativistic Electrodynamics and Differential Geometry (Springer, New York, 1987).

    Google Scholar 

  23. 23.

    F. Rohrlich, Am. J. Phys. 65, 1051 (1997).

    Google Scholar 

  24. 24.

    W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edn. (Addison- Wesley, Reading, Massachusetts, 1962).

    Google Scholar 

  25. 25.

    J. A. Wheeler and R. P. Feynman, Rev. of Mod. Phys. 21, 425 (1949).

    Google Scholar 

  26. 26.

    J. Schwinger, Found. Phys. 13, 2573 (1998).

    Google Scholar 

  27. 27.

    M. Born and L. Infield, Proc. R. Soc. London A144, 425 (1934).

    Google Scholar 

  28. 28.

    P. A. M. Dirac, Proc. R. Soc. London A167, 148 (1938).

    Google Scholar 

  29. 29.

    F. Bopp, Ann. Phys. 42, 573 (1942).

    Google Scholar 

  30. 30.

    N. Rosen, Phys. Rev. 72, 298 (1947).

    Google Scholar 

  31. 31.

    B. Podolsky and P. Schwed, Rev. Mod. Phys. 20, 40 (1948).

    Google Scholar 

  32. 32.

    R. P. Feynman, Phys. Rev. 74, 939 (1948).

    Google Scholar 

  33. 33.

    R. Haag, Z. Naturf. 10a, 752 (1955).

    Google Scholar 

  34. 34.

    S. Parrott and D. J. Endres, Found. Phys. 25, 441 (1995).

    Google Scholar 

  35. 35.

    F. E. Low, Ann. Phys. (N.Y.) 266, 274 (1998).

    Google Scholar 

  36. 36.

    A. A. Penzias and R. W. Wilson, Ap. J. 142, 419 (1965).

    Google Scholar 

  37. 37.

    P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).

    Google Scholar 

  38. 38.

    S. Schweber, QED and the Men Who Made It (Princeton University Press, Princeton, 1994).

    Google Scholar 

  39. 39.

    B. French and V. Weisskopf, Phys. Rev. 75, 1240 (1949).

    Google Scholar 

  40. 40.

    N. Kroll and W. Lamb, Phys. Rev. 75, 388 (1949).

    Google Scholar 

  41. 41.

    P. A. M. Dirac, Sci. Amer. 208, 45 (1963).

    Google Scholar 

  42. 42.

    T. P. Gill, The Doppler Effect (Logos, London, 1965).

    Google Scholar 

  43. 43.

    G. A. Schott, Phil. Mag. 29, 49 (1915).

    Google Scholar 

  44. 44.

    W. Ritz, Archives des Sciences Physiques et Naturelles 16, 209 (1908).

    Google Scholar 

  45. 45.

    C. Moller, The Theory of Relativity (Clarendon, London, 1960).

    Google Scholar 

  46. 46.

    C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover, New York, 1988).

    Google Scholar 

  47. 47.

    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II (Wiley-Interscience, New York, 1965).

    Google Scholar 

  48. 48.

    T. L. Gill and J. Lindesay, Int. J. Theor. Phys. 32, 2087 (1993).

    Google Scholar 

  49. 49.

    T. L. Gill, Fermilab-Pub-82/60-THY.

  50. 50.

    J. P. Aparicio, F. H. Gaioli, and E. T. Garcia-Alvarez, Phys. Rev. A 51, 96 (1995).

    Google Scholar 

  51. 51.

    J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  52. 52.

    J. R. Fanchi, Found. Phys. 23, 487 (1993).

    Google Scholar 

  53. 53.

    E. P. Wigner, Ann. Math. 40, 149 (1939).

    Google Scholar 

  54. 54.

    G. L. Strobel, Int. J. Theor. Phys. 37, 2087 (1998).

    Google Scholar 

  55. 55.

    T. L. Gill, W. W. Zachary, and J. Lindesay, Int. J. Theor. Physics 37, 2573 (1998).

    Google Scholar 

  56. 56.

    P. A. M. Dirac, V. A. Fock, and B. Podolsky, Phys. Z. Sowj. Un. 2, 6 (1932); reprinted in J. Schwinger, ed. Selected Papers in Quantum Electrodynamics (Dover, New York, 1958).

  57. 57.

    F. Rohrlich and L. P. Horwitz, Phys. Rev. D 24, 1528 (1981).

    Google Scholar 

  58. 58.

    G. Longhi, L. Lusanna, and J. M. Pons, J. Math. Phys. 30, 1893 (1989).

    Google Scholar 

  59. 59.

    R. J. Hughes, Am. J. Phys. 60, 301 (1992).

    Google Scholar 

  60. 60.

    L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1981).

    Google Scholar 

  61. 61.

    F. Rohrlich, Phys. Rev. D 60, 084017 (1999).

    Google Scholar 

  62. 62.

    E. C. G. Stückelberg, Helv. Phys. Acta 15, 23 (1942).

    Google Scholar 

  63. 63.

    F. J. Dyson, Phys. Rev. D 75, 486, 1736 (1949).

    Google Scholar 

  64. 64.

    G. W. Johnson and M. L. Lapidus, Mem. Am. Math. Soc. 62, 1 (1986).

    Google Scholar 

  65. 65.

    T. L. Gill and W.W. Zachary, J. Math. Phys. 28, 1459 (1987).

    Google Scholar 

  66. 66.

    G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus (Oxford University Press, New York, 2000).

    Google Scholar 

  67. 67.

    H. Poincaré, Science and Hypothesis (Dover, New York, 1952).

    Google Scholar 

  68. 68.

    A. Einstein, Ann. Phys. (Leipzig) 18, 639 (1905).

    Google Scholar 

  69. 69.

    J. G. Fox, Am. J. Phys. 33, 1 (1965).

    Google Scholar 

  70. 70.

    V. Bargmann and E. P. Wigner, Proc. Nat. Acad. Sci. 34, 211 (1948).

    Google Scholar 

  71. 71.

    E. Schrödinger and L. Bass, Proc. R. Soc. London A232, 1 (1938).

    Google Scholar 

  72. 72.

    A. Goldhaber and M. Nieto, Rev. Mod. Phys. 43, 277 (1971).

    Google Scholar 

  73. 73.

    R. Jackiw, Comments Mod. Phys. 1A, 1 (1999).

    Google Scholar 

  74. 74.

    A. I. Akhiezer and V. D. Berestetskii, Quantum Electrodynamics (Wiley-Interscience, New York, 1965).

    Google Scholar 

  75. 75.

    R. V. Pound and J. L. Snider, Phys. Rev. 140, B788 (1965).

    Google Scholar 

  76. 76.

    R. P. Feynman, Quantum Electrodynamics (Benjamin, New York, 1964).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gill, T.L., Zachary, W.W. & Lindesay, J. The Classical Electron Problem. Foundations of Physics 31, 1299–1355 (2001). https://doi.org/10.1023/A:1012222227710

Download citation

Keywords

  • Closed System
  • Inertial Frame
  • Parallel Image
  • Lorentz Group
  • Dissipative Term