Nonlocality in Relativistic Dynamics

Abstract

Recent experiments have renewed interest in nonlocal interpretations of quantum mechanics. The experimental observation of the violation of Bell's inequalities implies the existence of nonlocality. Bohm expressed the nonlocal connection between quantum particles through the wave function and the quantum potential. This paper shows that a similar connection exists in a relativistic dynamical theory known as parametrized relativistic quantum theory (PRQT). We present an introduction to PRQT, derive the quantum potential for a system of relativistic scalar particles, and discuss alternative interpretations of nonlocality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Greenstein and A. G. Zajonc, The Quantum Challenge (Jones and Bartlett, Sudbury, Massachusetts, 1997).

    Google Scholar 

  2. 2.

    J. S. Bell, Phys. 1, 195 (1964).

    Google Scholar 

  3. 3.

    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  4. 4.

    W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).

    Google Scholar 

  5. 5.

    D. Bohm, Phys. Rev. 85, 166 (1952); 89, 458 (1953).

    Google Scholar 

  6. 6.

    D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).

    Google Scholar 

  7. 7.

    J. R. Fanchi, Found. Phys. 28, 1401 (1998).

    Google Scholar 

  8. 8.

    J. R. Fanchi, Found. Phys. 28, 1521 (1998).

    Google Scholar 

  9. 9.

    M. A. Trump and W. C. Schieve, Classical Relativistic Many-Body Dynamics (Kluwer, Dordrecht, 1999).

    Google Scholar 

  10. 10.

    R. Omnè s, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1994).

    Google Scholar 

  11. 11.

    J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer, Dordrecht, 1993).

    Google Scholar 

  12. 12.

    J. R. Fanchi, Phys. Rev. A 34, 1677 (1986).

    Google Scholar 

  13. 13.

    E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322, 588 (1941) and 23 (1942).

    Google Scholar 

  14. 14.

    J. R. Fanchi and W. J. Wilson, Found. Phys. 13, 581 (1983).

    Google Scholar 

  15. 15.

    V. A. Fock, Phys. Z. Sowjetunion 12, 404 (1937).

    Google Scholar 

  16. 16.

    R.P. Feynman, Phys. Rev. 80, 440 (1950).

    Google Scholar 

  17. 17.

    J. Schwinger, Phys. Rev. 82, 664 and 914 (1951).

    Google Scholar 

  18. 18.

    J. R. Fanchi, Found. Phys. 23, 487 (1993).

    Google Scholar 

  19. 19.

    F. Rohrlich, Found. Phys. 26, 443 (1996).

    Google Scholar 

  20. 20.

    S. Goldstein, Phys. Today, Part One, 42 (March 1998); Part Two, 38 (April 1998); Letters 11 (February 1999).

  21. 21.

    W. Brouwer, Am. J. Phys. 48, 425 (1980) and references therein.

    Google Scholar 

  22. 22.

    J. R. Fanchi, Am. J. Phys. 48, 850 (1981).

    Google Scholar 

  23. 23.

    S. Weinberg, Quantum Theory of Fields, Volume I (Cambridge University Press, New York, 1995).

    Google Scholar 

  24. 24.

    E. Prugovecki, Found. Phys. 24, 335 (1995).

    Google Scholar 

  25. 25.

    J. R. Fanchi, Phys. Rev. D 20, 2108 (1979).

    Google Scholar 

  26. 26.

    J. R. Fanchi, Phys. Rev. A 35, 4859 (1987).

    Google Scholar 

  27. 27.

    L. P. Horwitz, S. Shashoua and W. C. Schieve, Physica A 161, 300 (1989).

    Google Scholar 

  28. 28.

    A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).

    Google Scholar 

  29. 29.

    J. L. McCauley, Classical Mechanics (Cambridge University Press, New York, 1997).

    Google Scholar 

  30. 30.

    M. Pavsic, Found. Phys. 21, 1005 (1991).

    Google Scholar 

  31. 31.

    J. R. Fanchi, Found. Phys. 30,1161 (2000).

    Google Scholar 

  32. 32.

    W. Heisenberg, 2 Feb. 1960 letter to Reuninger in M. Jammer, Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  33. 33.

    L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970); and Quantum Mechanics: A Modern Development, 2nd ed. (World Scientific, Singapore, 1998).

    Google Scholar 

  34. 34.

    A. Tonomura, Electron Holography (Springer-Verlag, New York, 1993).

    Google Scholar 

  35. 35.

    F. H. Fröhner, Z. Naturforsch. 53a, 637 (1998).

    Google Scholar 

  36. 36.

    R. E. Collins, Lett. Nuovo Cimento 18, 581 (1977); 25, 473 (1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fanchi, J.R. Nonlocality in Relativistic Dynamics. Foundations of Physics 31, 1267–1285 (2001). https://doi.org/10.1023/A:1012206526801

Download citation

Keywords

  • Wave Function
  • Quantum Mechanic
  • Experimental Observation
  • Quantum Theory
  • Recent Experiment