Skip to main content
Log in

The Use of Sonication for the Efficient Delivery of Plasmid DNA into Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Ultrasonic methods have considerable potential for the introduction of macromolecules into cells. In this paper we demonstrate that, under controlled conditions, application of 20kHz ultrasound to a suspension of yeast cells facilitates the delivery of plasmid DNA into these cells.

Methods. Aliquots of growing yeast cells (Saccharomyces cerevisae, strain AH22) were suspended in buffer and exposed to 20kHz ultrasound from a laboratory (probe-type) sonicator in the presence of microgram quantities of plasmid DNA. Efficiency of DNA delivery was scored as the number of cells transformed.

Results. Cell transformation was optimal at 30 seconds sonication using an output of 2.0 watts and resulted in a 20 fold enhancement over control values. At extended sonication times, fewer cells showed evidence of transformation because of reduced cell viability. The increased DNA uptake and the decreased cell viability were both attributable to acoustic cavitation events during sonication. The extent of acoustic cavitation was measured and it was found that there was an increase in cavitation events with increased sonication time. Cell viability was shown to be directly related to the number of cavitation events. The effects of sonication on plasmid DNA were investigated and indicated that the structural integrity of plasmid DNA was unaffected by the sonication conditions employed.

Conclusions. Under controlled conditions, ultrasound is an effective means of delivering plasmid DNA into cells. The subsequent expression of DNA molecules in cells depends upon a balance between transient cell damage and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Fechheimer, J. F. Boylan, S. Parker, J. E. Sisken, G. L. Patel, and S. G. Zimmer. Proc. Natl. Acad. Sci. USA 84:8463–8467 (1987).

    PubMed  Google Scholar 

  2. M. Fechheimer and D. L. Taylor. Methods. Cell Biol. 28:179–190 (1987).

    PubMed  Google Scholar 

  3. M. Joersbo and J. Brunstedt. Journal of Virological Methods 29:63–69 (1990).

    PubMed  Google Scholar 

  4. M. Joersbo and J. Brunstedt. Physiologia Plantarium 85:230–234 (1992).

    Google Scholar 

  5. M. L. Choudhary and C. K. Chin. J. Plant Biochemistry & Biotechnology 4:37–39 (1995).

    Google Scholar 

  6. L-J. Zhang, L-M. Cheng, N. Xu, N-M. Zhao, C-G. Li, J. Yuan, and S-R. Jia. Biotechnology 9(10):996–997 (1991).

    Google Scholar 

  7. N. Xu, N-M. Zhao, H. Zhang, H-Q. Tian, and J-M. Li. Agricultural Biotech. (Proceedings of the Asia-Pacific conference on agricultural biotechnology, Beijing, China ed. C. You and Z. Chen) 294–295 (1992).

  8. Z. Hong, X. Youju, J-R Dai, X. Ning, and N-M. Zhao. Agricultural Biotech. (Proceedings of the Asia-Pacific conference on agricultural biotechnology, Beijing, China ed. C. You and Z. Chen) 311–312 (1992).

  9. T. Freidmann. Nat. Genet. 2(2):93–98 (1992).

    PubMed  Google Scholar 

  10. E. F. Fynan, R. G. Webster, D. H. Fuller, J. R. Haynes, J. C. Santoro, and H. L. Robinson. Int. J. Immunopharmacol. 17(2):79–83 (1995).

    PubMed  Google Scholar 

  11. S. Mitragotri, D. Blankschtein, and R. Langer. Science 269:850–853 (1995).

    PubMed  Google Scholar 

  12. A. D'Emanuele, J. Kost, J. L. Hill, and R. Langer. Macromolecules 25:511–515 (1992).

    Google Scholar 

  13. T. Kondo and G. Yoshii. Ultrasound in Med. & Biol 11(1):113–119 (1985).

    Google Scholar 

  14. D. Gietz, A. St Jean, R. A. Woods, and R. H. Schiestl. Nucl. Acid Res. 20(6):1425 (1992).

    Google Scholar 

  15. A. C. Ward. Nucl. Acids Res. 18(17):5319 (1990).

    PubMed  Google Scholar 

  16. M. Mandel and A. Higa. J. Mol. Biol. 53:159–162. (1970).

    PubMed  Google Scholar 

  17. D. Ish-Horowicz and J. F. Burke. Nucl. Acids Res. 9(13):2989–2998 (1981).

    PubMed  Google Scholar 

  18. C. R. Hill. J. Acoust. Soc. Am. 52(2):667–671 (1971).

    Google Scholar 

  19. T. Kondo, S. Arai, M. Kuwabara, G. Yoshii, and E. Kano. Radiat. Res. 104:284–292 (1985).

    PubMed  Google Scholar 

  20. Gambihler and M. Delius. Ultrasound in Med. & Biol. 18(6/7):617–623 (1992).

    Google Scholar 

  21. P. R. Clarke and C. R. Hill. Exptl. Cell Res. 58:443–444 (1969).

    PubMed  Google Scholar 

  22. J. Thacker. Biochim. Biophys. Acta. 304:240–248 (1973).

    PubMed  Google Scholar 

  23. D. A. J. Wase and Y. R. Patel. J. Chem. Tech. Biotechnol. 35B:165–173 (1985).

    Google Scholar 

  24. D. E. Hughes and W. L. Nyborg. Science 138:108–114 (1962).

    PubMed  Google Scholar 

  25. P. R. Clarke and C. R. Hill. J. Acoust. Soc. Am. 47:649–653 (1970).

    PubMed  Google Scholar 

  26. V. Ciaravino, M.W. Miller, and E. L. Carstensen. Radiat. Res. 88:209–213 (1981).

    PubMed  Google Scholar 

  27. E. P. Armour and P. M. Corry. Radiat. Res. 89:369–380 (1982).

    PubMed  Google Scholar 

  28. U. Lauer, Z. Squire, E. Bürgelt, P. Hans Hofschneider, M. Gregor, S. Gambihler, and M. Delius. J. Cell Biochem. 18A:226 (1994).

    Google Scholar 

  29. M. Delius, P. Hans Hofschneider, U. Lauer, and K. Messmer. Lancet 345:27 (1995).

    Article  PubMed  Google Scholar 

  30. H. S. Schreier. Pharm. Acta. Helv. 68:145–159 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyber, J.A., Andrews, J. & D'Emanuele, A. The Use of Sonication for the Efficient Delivery of Plasmid DNA into Cells. Pharm Res 14, 750–756 (1997). https://doi.org/10.1023/A:1012198321879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012198321879

Navigation