Skip to main content
Log in

Thermophysical Properties of Trehalose and Its Concentrated Aqueous Solutions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To address the lack of fundamental thermophysical data for trehalose and its aqueous systems by measuring equilibrium and non-equilibrium properties of such systems.

Methods/Results. Differential scanning calorimetry (DSC) and dynamic mechanical analysis were used to measure glass transition temperatures of trehalose and its solutions. X-ray diffractometry was used to verify the structure of amorphous trehalose. Controlled-stress rheometry was used to measure viscosity of several aqueous trehalose systems at ambient and sub-ambient temperatures. Over this temperature range, the density of these solutions was also measured with a vibrating tube densimeter. The equilibrium phase diagram of aqueous trehalose was determined by measuring the solubility and freezing point depression.

Conclusions. Our solubility measurements, which have allowed long times for attainment of chemical equilibrium, are substantially different from those reported earlier that used different techniques. Our measurements of the glass transition temperature of trehalose are higher than reported values. A simple model for the glass transition is presented to describe our experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Elbein. Chem. Biochem. 30:227–256 (1974).

    Google Scholar 

  2. T. E. Honadel and G. J. Killian. Cryobiology 25:331–337 (1988).

    PubMed  Google Scholar 

  3. J. S. Clegg. Comp. Biochem. Physiol. 14:135–143 (1965).

    PubMed  Google Scholar 

  4. L. M. Crowe, R. Mouradian, J. H. Crowe, S. A. Jackson, and C. Womersley. Biochim. Biophys. Acta 769:141–150 (1984).

    PubMed  Google Scholar 

  5. J. H. Crowe, L. M. Crowe, and S. A. Jackson. Arch. Biochem. Biophys. 220:477–484 (1983).

    PubMed  Google Scholar 

  6. B. J. Roser. US Patent 4,891,319, Protection of Proteins and the Like, Jan. 2, 1990.

  7. B. J. Roser. US Patent 5,149,653, Preservation of Viruses, Sep. 22, 1992.

  8. L. M. Crowe, J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel. Arch. Biochem. Biophys. 242:240–247 (1985).

    PubMed  Google Scholar 

  9. J. L. Green and C. A. Angell. J. Phys. Chem. 93:2880–2882 (1989).

    Google Scholar 

  10. J. H. Crowe, S. B. Leslie, and L. M. Crowe. Cryobiology 31:355–366 (1994).

    PubMed  Google Scholar 

  11. M. C. Donnamaria, E. I. Howard, and J. R. Grigera. J. Chem. Soc. Faraday Trans. 90:2731–2735 (1994).

    Google Scholar 

  12. B. R. Rudolph, I. Chandrasekhar, B. P. Gaber, and M. Nagumo. Chem. Phys. Lipids 53:243–261 (1990).

    Google Scholar 

  13. J. H. Crowe. American Naturalist 105:563–573 (1971).

    Google Scholar 

  14. S. J. Webb. Bound Water in Biological Integrity, C. C. Thomas, Springfield, Illinois, 1965.

    Google Scholar 

  15. J. H. Crowe, L. M. Crowe, and R. Mouradian. Cryobiology 20:346–356 (1983).

    PubMed  Google Scholar 

  16. S. H. Gaffney, E. Haslam, T. H. Lilley, and T. R. Ward. J. Chem. Soc., Faraday Trans. I 84:2545–2552 (1988).

    Google Scholar 

  17. B. J. Aldous, A. D. Auffret, and F. Franks. Cryo-Letters 16:181–186 (1995).

    Google Scholar 

  18. R. V. Jasra and J. C. Ahluwalia. J. Chem. Thermodynamics 16:583–590 (1984).

    Google Scholar 

  19. L. Slade and H. Levine. Appl. Chem. 60:1841–1864 (1988).

    Google Scholar 

  20. M. Mathlouthi and A. Seuvre. J. Chem. Soc., Faraday Trans. I 84:2641–2650 (1988).

    Google Scholar 

  21. M. Portmann and G. Birch. J. Sci. Food Agric. 69:275–281 (1995).

    Google Scholar 

  22. S. Galema and H. Høiland. J. Phys. Chem. 95:5321–5326 (1991).

    Google Scholar 

  23. G. G. Birch and S. Catsoulis. Chemical Senses 10:325–332 (1985).

    Google Scholar 

  24. S. Shamil, G. G. Birch, M. Mathlouthi, and M. N. Clifford. Chemical Senses 12:397–409 (1987).

    Google Scholar 

  25. F. Shahidi, P. G. Farrell, and J. T. Edward. J. Solution Chem. 5:807–816 (1976).

    Google Scholar 

  26. H. Nicolajsen and A. Hvidt. Cryobiology 31:199–205 (1994).

    Google Scholar 

  27. E. Y. Shalaev and F. Franks. J. Chem. Soc. Faraday Trans. 91:1511–1517 (1995).

    Google Scholar 

  28. Y. Roos. Carbohydr. Res. 238:39–48 (1993).

    Google Scholar 

  29. A. Saleki-Gerhardt and G. Zografi. Pharm. Res. 11:1166–1173 (1994).

    PubMed  Google Scholar 

  30. G. Scatchard, P. T. Jones, and S. S. Prentiss. J. Am. Chem. Soc. 54:2676–2690 (1932).

    Google Scholar 

  31. J. Timmermans. Elsevier Publishing Co., Inc., New York, 1950.

  32. William Elmer Forsythe (ed.). Smithsonian Physical Tables, 9th rev. ed., Washington D.C., Smithsonian Institution, 1956.

    Google Scholar 

  33. A. P. MacKenzie. Phil. Trans. R. Soc. Lond. B. 278:167–189 (1977).

    Google Scholar 

  34. F. E. Young, F. T. Jones, and H. J. Lewis. J. Phys. Chem. 56:1093–1096 (1952).

    Google Scholar 

  35. F. E. Young and F. T. Jones. J. Phys. Coll. Chem. 53:1334–1338 (1949).

    Google Scholar 

  36. F. E. Young. J. Phys. Chem. 61:616–620 (1957).

    Google Scholar 

  37. L. Slade and H. Levine. Critical Reviews in Food Science and Nutrition 30:115–360 (1991).

    PubMed  Google Scholar 

  38. D. R. Lide (ed.). CRC handbook of Chemistry and Physics, 71st ed., Boca Raton, FL, CRC Press, Inc., 1990.

    Google Scholar 

  39. S. Shamblin, University of Wisconsin Department of Pharmacy, personal communication, 1996.

  40. A. Kolker, D. Miller, and J.J. de Pablo. Proceedings of the annual conference of the American Institute of Chemical Engineers, November 1995, Miami, Fl.

  41. P. R. Couchman and F. E. Karasz. Macromol. 11:117–119 (1978).

    Google Scholar 

  42. M. Sugisaki, H. Suga, and S. Seki. Bull. Chem. Soc. Jpn. 41:2591–2599 (1968).

    Google Scholar 

  43. M. G. Sceats and S. A. Rice. F. Franks (ed.), Water: A Comprehensive Treatise, Vol. 7, Plenum Press, New York, 1982, pp. 90–98.

    Google Scholar 

  44. G. P. Johari. Philosophical Mag. B 35:1077–1090 (1977).

    Google Scholar 

  45. A. Hallbrucker, E. Mayer, and G. P. Johari. J. Phys. Chem. 93:4986–4990 (1989).

    Google Scholar 

  46. C. A. Angell and J. C. Tucker. J. Phys. Chem. 84:268–272 (1980).

    Google Scholar 

  47. C. A. Angell. Ann. Rev. Phys. Chem. 34:593–630 (1983).

    Article  Google Scholar 

  48. A. Hallbrucker, E. Mayer, and G. P. Johari. Phil. Mag. B 60:179–187 (1989).

    Google Scholar 

  49. R. J. Speedy, P. G. Debenedetti, R. S. Smith, C. Huang, and B. D. Kay. J. Chem Phys. 105:240–244 (1996).

    Article  Google Scholar 

  50. M. L. Williams, R. F. Landel, and J. D. Ferry. J. Am. Chem. Soc. 77:3701–3707 (1955).

    Google Scholar 

  51. C. A. Angell. J. Non-Crystalline Solids 131–133:13–31 (1991).

    Article  Google Scholar 

  52. T. Soesanto and M. C. Williams. J. Phys. Chem. 85:3338–3341 (1981).

    Google Scholar 

  53. S. R. Elliot. Physics of Amorphous Materials, Second Edition, John Wiley and Sons, Inc., New York, 1990.

    Google Scholar 

  54. R. J. Bellows and C. J. King. AIChE Symposium Series 69:33–41 (1973).

    Google Scholar 

  55. C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni, and E. J. Sare. J. Food Eng. 22:115–142 (1994).

    Article  Google Scholar 

  56. G. Blond. Cryo-Letters 10:299–308 (1989).

    Google Scholar 

  57. H. Kawai, M. Sakurai, Y. Inoue, R. Chûjô, and S. Kobayashi. Cryobiology 29:599–606 (1992).

    PubMed  Google Scholar 

  58. Y. Roos. Carbohydr. Res. 238:39–48 (1993).

    Article  Google Scholar 

  59. Y. Dakhnovskii and V. Lubchenko. J. Chem. Phys. 104:664–668 (1996).

    Article  Google Scholar 

  60. D. P. Miller, J. J. de Pablo, and H. R. Corti. J. Chem. Phys. 105:8979–8980 (1996).

    Article  Google Scholar 

  61. G. Fleissner, A. Hallbrucker, and E. Mayer. J. Phys. Chem. 97:4806–4814 (1993).

    Google Scholar 

  62. R. Zallen. The Physics of Amorphous Solids, John Wiley & Sons, Inc., New York, 1983.

    Google Scholar 

  63. B. V. Zheleznyi. Russ. J. Phys. Chem. 43:1311–1312 (1969).

    Google Scholar 

  64. P. H. Poole, U. Essmann, F. Sciortino, and H. E. Stanley. Physical Review E 48:4605–4610 (1993).

    Article  Google Scholar 

  65. L. Her and S. L. Nail. Pharm. Res. 11:54–59 (1994).

    Article  PubMed  Google Scholar 

  66. M. Gordon and J. Taylor. J. Appl. Chem. 2:493–500 (1952).

    Google Scholar 

  67. A. Saleki-Gerhardt. Ph.D. Thesis, University of Wisconsin-Madison, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.P., de Pablo, J.J. & Corti, H. Thermophysical Properties of Trehalose and Its Concentrated Aqueous Solutions. Pharm Res 14, 578–590 (1997). https://doi.org/10.1023/A:1012192725996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012192725996

Navigation