Skip to main content
Log in

The Effect of Benzyl Alcohol on Recombinant Human Interferon-γ

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The goal of this study was to investigate the conformational change and aggregation of recombinant human interferon-gamma (rhIFN-γ) as a result of interaction between benzyl alcohol and the protein. The effects of buffer concentration, buffer species, ionic strength, rhIFN-γ and benzyl alcohol concentrations on the dynamics of the interaction in liquid formulations were also examined.

Methods. The effect of benzyl alcohol on the secondary and tertiary structure of rhIFN-γ in succinate and acetate buffers was studied using far-UV and near-UV circular dichroism spectrophotometry, respectively. Dynamic light scattering was employed to detect aggregate formation due to the interaction of benzyl alcohol with rhIFN-γ.

Results. The addition of benzyl alcohol at 0.9% (w/v) in various liquid rhIFN-γ formulations induced changes in circular dichroism (CD) spectra of the protein in the near-UV region, while the CD spectra in the far-UV region remained unaltered. There were gradual decreases in ellipticity with time throughout the near-UV CD spectra. The decreases in near-UV ellipticity induced by benzyl alcohol were accompanied by the formation of high molecular weight aggregates as measured by dynamic light scattering. Loss in near-UV ellipticity was accelerated at lower protein concentration and by increasing buffer or benzyl alcohol concentration. It was also faster in succinate than in acetate buffer. Formulation ionic strength did not affect the CD spectral changes in both the near- and far-UV regions.

Conclusions. Interaction between benzyl alcohol and rhIFN-γ is formulation dependent. Protein concentration, buffer species, buffer concentration, and preservative concentration play a significant role in determining the extent of the interaction and consequently the stability of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. T. Kimura, T. D. Farby, R. A. Krause, and H. D. Brondyk. Toxicol. Appl. Pharmacol. 18:60–68 (1971).

    PubMed  Google Scholar 

  2. M. J. Akers. Pharm. Technol. 8:36–46 (1984).

    Google Scholar 

  3. M. J. Akers, A. V. Boand, and D. A. Binkley. J. Pharm. Sci. 73:903–905 (1984).

    PubMed  Google Scholar 

  4. L. E. Kirsch, R. M. Riggin, D. A. Gearhart, D. S. Lefeber, and D. L. Lytle. J. Parent. Sci. Technol. 47:155–160 (1993).

    Google Scholar 

  5. Y. F. Maa, and C. C. Hsu. Int. J. Pharm. 140:155–168 (1996).

    Google Scholar 

  6. W. D. Loomis. Meth. Enzymol. 13:555–563 (1969).

    Google Scholar 

  7. W. D. Loomis and J. Battaile. Phytochem. 5:423–438 (1966).

    Google Scholar 

  8. J. M. G. Sechler, H. L. Malech, C. J. White, and J. I. Gallin. Proc. Natl. Acad. Sci. 85:4874–4878 (1988).

    PubMed  Google Scholar 

  9. R. A. B. Ezekowitz, M. C. Dinauer, H. S. Jaffe, S. H. Orkin, and P. E. Newburger. N. Engl. J. Med. 319:146–151 (1988).

    PubMed  Google Scholar 

  10. E. T. Wheelock. Science. 149:310–311 (1965).

    Google Scholar 

  11. J. A. Green, S. R. Cooperband, and S. Kibrick. Science. 164:1415–1417 (1969).

    PubMed  Google Scholar 

  12. L. B. Epstein, M. J. Cline, and T. C. Merigam. Cell. Immunol. 2:602–613 (1971).

    PubMed  Google Scholar 

  13. Y. K. Yip, R. H. L. Pang, J. D. Oppenheim, M. S. Nachbar, D. Henriksden, I. Zerebeckyj-Eckhardt, and J. Vilcek. Infect. Immun. 34:131–139 (1981).

    PubMed  Google Scholar 

  14. Y. R. Hsu and T. Arakawa. Biochem. 24:7959–7963 (1985).

    Google Scholar 

  15. T. Arakawa, Y. R. Hsu, and D. A. Yphantis. Biochem. 26:5428–5432 (1987).

    Google Scholar 

  16. M. G. Mulkerrin and R. Wetzel. Biochem. 28:6556–6561 (1989).

    Google Scholar 

  17. R. Lumry and R. Biltonen. In S. Timasheff and G. Fasman (eds.), Structure and Stability of Biological Macromolecules, Marcel Dekker, New York, 1969.

    Google Scholar 

  18. T. Arakawa, N. K. Alton, and Y-R. Hsu. J. Biol. Chem. 260:14435–14439 (1985).

    PubMed  Google Scholar 

  19. E. Rinderknecht, B. H. O'Connor, and H. Rodriguez. J. Biol. Chem. 2599:6790–6797 (1984).

    Google Scholar 

  20. E. Rinderknecht and L. E. Burton. In H. Kirchner and H. Schellekens (eds.), The Biology of the Interferon System, Elsevier Science Publishers, New York, 1984.

    Google Scholar 

  21. S. W. Provencher. In E. O. Schulz-Dubois (ed.), Photon Correlation Techniques. Springer-Verlag, New York, 1983, pp. 322–328.

    Google Scholar 

  22. X. M. Lam, H. R. Costantino, D. E. Overcashier, T. H. Nguyen and C. C. Hsu, Int. J. Pharm. 142:85–95 (1996).

    Article  Google Scholar 

  23. D. F. Nicoli and G. Benedek. Bioploymers. 15:2421–2437 (1976).

    Google Scholar 

  24. J. L. Cleland, and D. I. C. Wang. In G. Georgiou, and E. De Bernardez-Clark (Eds.), Protein Refolding, ACS Symposium Series No. 470, American Chemical Society, 1991, pp. 322–328.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, X.M., Patapoff, T.W. & Nguyen, T.H. The Effect of Benzyl Alcohol on Recombinant Human Interferon-γ. Pharm Res 14, 725–729 (1997). https://doi.org/10.1023/A:1012190120061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012190120061

Navigation