Skip to main content
Log in

Inulin Hydrogels as Carriers for Colonic Drug Targeting: I. Synthesis and Characterization of Methacrylated Inulin and Hydrogel Formation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Vinyl groups were introduced in inulin chains in order to form hydrogels of this sugar polymer by free radical polymerization.

Methods. Inulin was reacted with glycidyl methacrylate in N,N-dimethylformamide in the presence of 4-dimethylaminopyridine as catalyst. 1H and 13C NMR spectroscopy were used for the characterization of the obtained reaction product. Solid state 13C NMR spectroscopy revealed the conversion of the incorporated vinyl groups into covalent cross-links upon free radical polymerization of aqueous solutions of the derivatized inulin.

Results. During reaction of inulin with glycidyl methacrylate, transesterification occurred, leading to the direct attachment of the methacryloyl group to inulin. Consequently, the obtained reaction product is methacrylated inulin. The extent of chemical modification of inulin could be tuned by varying the molar ratio of glycidyl methacrylate to inulin in the reaction mixture. Aqueous solutions of methacrylated inulin were converted into cross-linked hydrogels by free radical polymerization using ammonium persulphate and N,N,N′,N′-tetramethylethylenediamine as initiating system.

Conclusions. Inulin hydrogels can be formed by free radical polymerization of aqueous solutions of methacrylated inulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Van Loo, P. Coussement, L. De Leenheer, H. Hoebregs, and G. Smits. Crit. Rev. Food Sci. Nutr. 36:525–552 (1995).

    Google Scholar 

  2. P. Dysseler and D. Hoffem. Eur. J. Clin. Nutr. 49:S145–S152 (1995).

    Google Scholar 

  3. G. R. Gibson and M. B. Roberfroid. J. Nutr. 125:1401–1414 (1995).

    Google Scholar 

  4. M. B. Roberfroid. Crit. Rev. Food Sci. Nutr. 33:103–148 (1993).

    Google Scholar 

  5. X. Wang and G. R. Gibson. J. Appl. Bact. 75:373–380 (1993).

    Google Scholar 

  6. R. C. McKellar and H. W. Modler. Appl. Microbiol. Biotechnol. 31:537–541 (1989).

    Google Scholar 

  7. G. R. Gibson, C. L. Willis, and J. Van Loo. Int. Sugar J. 96 (1994).

  8. E. Harboe, C. Larsen, M. Johansen, and H. P. Olesen. Pharm. Res. 6:919–923 (1989).

    Google Scholar 

  9. K. O. R. Lehmann and K. D. Dreher. Proceed Intern. Symp. Control. Rel. Bioact. Mater. 18:331–332 (1991).

    Google Scholar 

  10. G. Van den Mooter, C. Samyn, and R. Kinget. Int. J. Pharm. 87:37–46 (1992).

    Google Scholar 

  11. A. Rubinstein, R. Radai, M. Ezna, and S. Pathnack. Pharm. Res. 10:258–263 (1993).

    Google Scholar 

  12. L. Hovgaard and H. Brondsted. J. Contr. Rel. 36:159–166 (1995).

    Google Scholar 

  13. J. Kopecek, P. Kopeckova, H. Brondsted, R. Rathi, B. Rihova, P. Y. Yeh, and K. Ikesue. J. Contr. Rel. 19:121–130 (1992).

    Google Scholar 

  14. L. Vervoort and R. Kinget. Int. J. Pharm. 129:185–190 (1996).

    Google Scholar 

  15. W. N. E. van Dijk-Wolthuis, O. Franssen, H. Talsma, M. J. van Steenbergen, J. J. Kettenes-van den Bosch, and W. E. Hennink. Macromolecules 28:6317–6322 (1995).

    Google Scholar 

  16. Belgian Pharmacopoeia, sixth ed., VII.1.1. (1987).

  17. W. Van Den Ende, A. Mintiens, H. Speleers, A. A. Onuoha, and A. Van Laere. New Phytol. 132:555–563 (1996).

    Google Scholar 

  18. X. D. Feng, X. Q. Guo, and K. Y. Qiu. Makromol. Chem. 189:77–83 (1988).

    Google Scholar 

  19. C. J. Pouchert. The Aldrich library of 13C and 1H FT NMR spectra, Aldrich Chemical Company, 1993, vol I p 341 A.

  20. J. Vermeersch and E. Schacht. Makromol. Chem. 187:125–131 (1986).

    Google Scholar 

  21. A. De Bruyn and J. Van Loo. Carbohydr. Res. 211:131–136 (1991).

    Google Scholar 

  22. J. W. Timmermans, P. de Waard, H. Tournois, B. R. Leeflang and J. F. G. Vliegenthart. Carbohydr. Res. 243:379–384 (1993).

    Google Scholar 

  23. D. Wang, L. Carrera, and M. J. M. Abadie. Eur. Polym. J. 29:1379–1386 (1993).

    Google Scholar 

  24. H. Kazmarek and C. Decker. J. Appl. Polym. Sci. 54:2147–2156 (1994).

    Google Scholar 

  25. E. Pretsch. Tabellen zur structuraufklärung organischer verbindungen mit spektroskopischen methoden, Springer-Verlag, Berlin Heidelberg New York, 1976, p. C170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbeth Vervoort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vervoort, L., Van den Mooter, G., Augustijns, P. et al. Inulin Hydrogels as Carriers for Colonic Drug Targeting: I. Synthesis and Characterization of Methacrylated Inulin and Hydrogel Formation. Pharm Res 14, 1730–1737 (1997). https://doi.org/10.1023/A:1012179813102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012179813102

Navigation