Skip to main content
Log in

The Crystallite-Gel-Model for Microcrystalline Cellulose in Wet-Granulation, Extrusion, and Spheronization

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A new model for the wet-extrusion/spheronization process with microcrystalline cellulose (MCC) is proposed. The crystallite-gel-model is able to elucidate the unique role of MCC in this process. Many other experimental results, which cannot be explained by the standard model of granulation, the liquid saturation model, give evidence for the crystallite-gel-model.

Methods. Pellets were prepared from different types of MCC. Water content during extrusion, power consumption and aspect ratio were correlated. X-ray diffractograms of MCC powders, extrudates and pellets were taken in order to provide information on changes at the single crystallite level. SEM-photographs and leaching studies gave additional information on changes at the particulate level of MCC.

Results. At the level of MCC powder particles, dramatic changes occurred during extrusion/spheronization. In contrast to this no changes could be observed at the level of individual crystallites.

Conclusions. During granulation and extrusion MCC-particles are thought to be broken down into smaller particles and possibly ultimate single crystallites in the presence of water. The crystallite-gel-model serves as the framework for a new interpretation of the wet-extrusion/ spheronization process. Apart from the ability to explain experimental data published previously in the literature it can be used to develop new experimental plans for further research. Consequently, the crystallite-gel-model exhibits explanatory as well as predictive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. E. Fielden and J. M. Newton. In. J. Swarbrick and J. C. Boylan (Eds). Encyclopedia of Pharmaceutical Technology. Vol. 5, Marcel Dekker: New York, Basel 1992.

    Google Scholar 

  2. R. D. Shah, M. Kabadi, D. G. Pope, and L. L. Augsburger. Pharm. Res. 12:496–507 (1995).

    PubMed  Google Scholar 

  3. R. K. Chohan and J. M. Newton. Int. J. Pharm. 131:201–207 (1996).

    Google Scholar 

  4. K. E. Fielden, J. M. Newton, and R. C. Rowe. Int. J. Pharm. 97:79–92 (1993).

    Google Scholar 

  5. P. Kleinebudde. J. Pharm. Sci. 84:1259–1264 (1995).

    PubMed  Google Scholar 

  6. D. M Newitt and J. M. Conway-Jones. Trans. Instn. Chem. Engrs. 36:422–442 (1958).

    Google Scholar 

  7. H. Rumpf. Chem.-Ing.-Techn. 30:144–158 (1958).

    Google Scholar 

  8. H. G. Kristensen and T. Schaefer. In. J. Swarbrick, and J. C Boylan (Eds.). Encyclopedia of Pharmaceutical Technology. Vol. 7, Marcel Dekker: New York, Basel 1993.

    Google Scholar 

  9. R. C. Rowe and G. R. Sadeghnejad. Int. J. Pharm. 38:227–229 (1987).

    Google Scholar 

  10. M. D. Parker and R. C. Rowe. Powder Technol. 65:273–281 (1991).

    Google Scholar 

  11. J. M. Newton, A. K. Chow, and K. B. Jeewa. Pharm. Tech. Int. 4 (Oct):52–58 (1992).

  12. K. E. Fielden, J. M. Newton, and R. C. Rowe. J. Pharm. Pharmacol. 41:217–221 (1989).

    PubMed  Google Scholar 

  13. D. Bains, S. L. Boutell, and J. M. Newton. Int. J. Pharm. 69:233–237 (1991).

    Google Scholar 

  14. P. Kleinebudde, A. J. Sølvberg, and H. Lindner. J. Pharm. Pharmacol. 46:542–546 (1994).

    PubMed  Google Scholar 

  15. J. Miyake, A. Shinoda, K. Uesugi, M. Furukawa, and T. Nasu. Yakuzaigaku 33:167–171 (1973).

    Google Scholar 

  16. C. Vervaet, L. Baert, P. A. Risha, and J. P. Remon. Int. J. Pharm. 107:29–39 (1994).

    Google Scholar 

  17. R. D. Shah, M. Kabadi, D. G. Pope, and L. L. Augsburger. Pharm. Res. 11:355–360 (1994).

    PubMed  Google Scholar 

  18. E. Jerwanska, G. Alderborn, J. M. Newton, and C. Nyström. Int. J. Pharm. 121:65–71 (1995).

    Google Scholar 

  19. P. Kleinebudde. Int. J. Pharm. 109:209–219 (1994).

    Google Scholar 

  20. E. Doelker. Drug Dev. Ind. Pharm. 19:2399–2471 (1993).

    Google Scholar 

  21. G. Zografi and M. J. Kontny. Pharm. Res. 3:187–194 (1986).

    Google Scholar 

  22. K. E. Fielden, J. M. Newton, P. O'Brien, and R. C. Rowe. J. Pharm. Pharmacol. 40:674–678 (1988).

    PubMed  Google Scholar 

  23. K. E. Fielden, J. M. Newton, and R. C. Rowe. Int. J. Pharm. 79:47–60 (1992).

    Article  Google Scholar 

  24. H. G. Brittain, G. Lewen, A. W. Newman, K. Fiorelli, and S. Bogdanowich. Pharm. Res. 10:61–67 (1993).

    Article  PubMed  Google Scholar 

  25. B. Johansson, M. Wikberg, R. Ek, and G. Alderborn. Int. J. Pharm. 117:57–73 (1995).

    Article  Google Scholar 

  26. G. P. Millili, R. J. Wigent, and J. B. Schwartz. Drug Dev. Ind. Pharm. 16:2383–2407 (1990).

    Google Scholar 

  27. M. Schröder and P. Kleinebudde. Pharm. Res. 12:1694–1700 (1995).

    Article  PubMed  Google Scholar 

  28. R. E. O'Connor and J. B. Schwartz. Pharm. Res. 10:356–361 (1993).

    Article  PubMed  Google Scholar 

  29. H. Lindner and P. Kleinebudde. Pharm. Ind. 55:694–701 (1993).

    Google Scholar 

  30. H. Knolle and G. Jayme. Das Papier 19:106–110 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinebudde, P. The Crystallite-Gel-Model for Microcrystalline Cellulose in Wet-Granulation, Extrusion, and Spheronization. Pharm Res 14, 804–809 (1997). https://doi.org/10.1023/A:1012166809583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012166809583

Navigation