Skip to main content
Log in

A New Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drugs: I. Diltiazem Hydrochloride

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to develop a new ternary polymeric matrix system that is easy to manufacture and that delivers a highly soluble drug over long periods of time.

Methods. Pectin, hydroxypropylmethylcellulose (HPMC), and diltiazem HC1 granulated with gelatin at optimized ratios were blended at different loading doses and directly compressed. Swelling behavior, dissolution profiles and the effect of hydrodynamic stress on release kinetics were evaluated.

Results. Diltiazem release kinetics from the ternary polymeric system was dependent on the different swelling behavior of the polymers and varied with the drug loading dose and hydrodynamic conditions. Drug release followed either non-Fickian or Case II transport kinetics. The relative influence of diffusion and relaxational/dissolution effects on release profiles for different drug loadings was calculated by a nonlinear regression approach. Photographs taken during swelling show that the anisotropic nature of the gel structure, drug loading dose, swelling capacity of polymers used, and the design of delivery system all play important roles in controlling the drug release and dissolution/ erosion processes.

Conclusions. Zero-order delivery of diltiazem HC1 from a simple tablet matrix was achieved. The ternary polymeric system developed in this study is suitable for controlled release of highly soluble drugs. It offers a number of advantages over existing systems, including ease of manufacturing and of release modulation, as well as reproducibility of release profiles under well defined hydrodynamic conditions. Our delivery system has the potential to fully release its drug content in a controlled manner over a long time period and to dissolve completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. United State Patent No. 4,839,177 (1989).

  2. U. Conte, L. Maggi, and A. La Manna. S.T.P. Pharma. Sciences. 412:107-113 (1994).

    Google Scholar 

  3. K. Heilmann. Therapeutic Systems, Rate-Controlled Drug Delivery: Concept and Development, 2nd ed., Thieme-Stratton, New York, 50p 1984.

    Google Scholar 

  4. B. Eckenhoff, F. Theeuwes, and J. Urquhart. Pharm. Techn. 5:35-44 (1881).

    Google Scholar 

  5. L. Yang and R. Fassihi. J. Pharm. Sci. 85:170-173 (1996).

    PubMed  Google Scholar 

  6. M. Sato, T. Nagao, I. Yamaguchi, H. Nakajima, and A. Kiyomoto. Arzneim.-Forsch. 21:1338-1343 (1971).

    Google Scholar 

  7. M. S. Smith, C. P. Verghese, D. G. Shand, and E. L. C. Pritchett. Am. J. Cardiol. 51:1369-1374 (1983).

    PubMed  Google Scholar 

  8. L. M. Prisant, B. Bottini, J. T. Dipiro, and A. A. Carr. Am. J. Med. 93(suppl 2A):45S-55S (1992).

    PubMed  Google Scholar 

  9. M. Gibaldi. Pharmaceutical News. 3:8-12 (1996).

    Google Scholar 

  10. J. G. Wagner. Drug. Stand. 28:30-34 (1960).

    Google Scholar 

  11. T. Higuchi. J. Pharm. Sci. 52:1145-1149 (1963).

    PubMed  Google Scholar 

  12. A. W. Hixson, J. H. Crowell. Ind. Eng. Chem., 23:923-927 (1931).

    Google Scholar 

  13. G. Xu and H. Sunada. Chem. Pharm. Bull. 43:483-487 (1995).

    PubMed  Google Scholar 

  14. H. Kim, A. R. Fassihi. J. Pharm. Sci. 86:316-322 (1997).

    PubMed  Google Scholar 

  15. H. Kim, A. R. Fassihi. J. Pharm. Sci. 86:323-328 (1997).

    PubMed  Google Scholar 

  16. S. C. Sutton, K. Engle, R. A. Deeken, K. E. Pluteand R. D. Shaffer. Pharm. Res. 8:84-87 (1991).

    PubMed  Google Scholar 

  17. L. Yang and A. R. Fassihi. J. Control. Rel. 11:135-140 (1996).

    Google Scholar 

  18. R. T. C. Ju, P. R. Nixon, M. V. Patel, and M. Tong. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 22:59-60 (1995).

    Google Scholar 

  19. P. L. Ritger and N. A. Peppas. J. Cont. Rel. 5:37-42 (1987).

    Google Scholar 

  20. P. Colombo, R. Bettini, R.; G. Massimo, P. L. Catellani, P. Santi, and N. A. Peppas. J. Pharm. Sci. 84:991-997 (1995).

    PubMed  Google Scholar 

  21. W. D. Lindner and B. C. Lippold. Pharm. Res. 12:1781-1785 (1995).

    PubMed  Google Scholar 

  22. A. T. Pham and P. I. Lee. Pharm. Res. 11:1379-1384 (1994).

    PubMed  Google Scholar 

  23. N. A. Peppas and J. J. Sahlin. Int. J. Pharm. 57:169-172 (1987).

    Google Scholar 

  24. A. R. Beren and H. B. Hopfenberg. Polymers. 19:489 (1978).

    Google Scholar 

  25. W. Sutananta, D. Q. M. Craig, and J. M. Newtons. J. Pharm. Pharmcol. 47:182-187 (1995).

    Google Scholar 

  26. D. L. Wolfram and C. L. Bernhard. Pharm. Res. 12:1781-1785 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Fassihi, R. A New Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drugs: I. Diltiazem Hydrochloride. Pharm Res 14, 1415–1421 (1997). https://doi.org/10.1023/A:1012124806316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012124806316

Navigation