Skip to main content
Log in

Carboxyl-directed Pegylation of Brain-derived Neurotrophic Factor Markedly Reduces Systemic Clearance with Minimal Loss of Biologic Activity

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Brain-derived neurotrophic factor (BDNF) was modified by carboxyl-directed protein pegylation in order to both retain biologic activity of the neurotrophin and reduce the rate of systemic clearance of this cationic protein in vivo. Since the modification of surface lysine residues of neurotrophins results in loss of biologic activity, the present studies examine the feasibility of placing polyethyleneglycol (PEG) polymers on carboxyl residues of surface glutamate or aspartate residues of BDNF.

Methods. PEG molecules with terminal hydrazide (Hz) moieties of molecular weight 2,000 (PEG2000-Hz) or 5,000 (PEG5000-Hz) Daltons were coupled to BDNF carboxyls using carbodiimide.

Results. The systemic clearances of the BDNF-PEG2000 and BDNF-PEG5000 were reduced 67% and 91%, respectively, compared to unconjugated BDNF. The brain volume of distribution (VD) of BDNF-PEG5000 was not significantly different from the cerebral plasma volume. Cell survival studies and TrkB auto-phosphorylation assays showed that the biologic activity of BDNF was not changed following pegylation with PEG2000, and was minimally impaired following pegylation with PEG5000.

Conclusions. These experiments describe the first carboxyl-directed pegylation of a neuropeptide, and show this formulation substantially reduces the systemic distribution and elimination of the neurotrophic factor. The biologic activity of the neurotrophin is retained with carboxyl-directed pegylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Leibrock, F. Lottspeich, A. Hohn, M. Hofer, B. Hengerer, P. Masiakowski, H. Thoenen, and Y.-A. Barde. Nature. 341:149–152 (1989).

    Google Scholar 

  2. C. Hyman, M. Hofer, Y.-A. Barde, M. Juhasz, G. D. Yancopoulos, S. P. Squinto, and R. M. Lindsay. Nature. 350:230–232 (1991).

    Google Scholar 

  3. M. B. Spina, S. P. Squinto, J. Miller, R. M. Lindsay, and C. Hyman. J Neurochem. 59:99–106 (1992).

    Google Scholar 

  4. W. M. Pardridge, Y.-S. Kang, and J. L. Buciak. Pharm. Res. 11:738–746 (1994).

    Google Scholar 

  5. W. M. Pardridge. Adv. Drug Del. Rev. 15:109–146 (1995).

    Google Scholar 

  6. W. M. Pardridge, J. Eisenberg, and J. Yang. Metabolism. 36:892–895 (1987).

    Google Scholar 

  7. J. B. Fishman, J. B. Rubin, J. V. Handrahan, J. R. Connor, and R. E. Fine. J. Neurosci. Res. 18:299–304 (1987).

    Google Scholar 

  8. S. Skarlatos, T. Yoshikawa, and W. M. Pardridge. Brain Res. 683:164–171 (1995).

    Google Scholar 

  9. A. W. Jefferies, M. R. Brandon, A. F. Williams and S. V. Hunt. Immunol. 54:333–341 (1985).

    Google Scholar 

  10. M. J. Knauf, D. P. Bell, P. Hirtzer, Z.-P. Luo, J. D. Young, and N. V. Katre. J. Biol. Chem. 263:15064–15070 (1988).

    Google Scholar 

  11. R. Clark, K. Olson, G. Fuh, M. Marian, D. Mortensen, G. Teshima, S. Chang, H. Chu, et al. J. Biol. Chem. 271:21969–21977 (1996).

    Google Scholar 

  12. Y. Tsutsumi, T. Kihira, S. Tsunoda, H. Kamada, S. Nakagawa, Y. Kaneda, T. Kanamori, and T. Mayumi. J. Pharmacol. Exp. Ther. 278:1006–1011 (1996).

    Google Scholar 

  13. M. B. Rosenberg, E. Hawrot, and X. O. Breakefield. J. Neurochem. 46:641–648 (1986).

    Google Scholar 

  14. D. K. Pattit, T. P. Bonnert, J. Eisenman, S. Srinivasan, R. Paxton, C. Beers, D. Lynch, B. Miller, et al. J. Biol. Chem. 272:2312–2318 (1997).

    Google Scholar 

  15. L. O. Narhi, R. Rosenfeld, J. Talvenheimo, S. J. Prestrelski, T. Arakawa, J. W. Lary, C. G. Kolvenbach, R. Hecht, et al. J. Biol. Chem. 268:13309–13317 (1993).

    Google Scholar 

  16. T. Arakawa, M. Haniu, L. O. Narhi, J. A. Miller, J. Talvenheimo, J. S. Philo, H. T. Chute, C. Matheson, et al. J. Biol. Chem. 269:27833–27839 (1994).

    Google Scholar 

  17. P. S. DiStefano, B. Friedman, C. Radziejewski, C. Alexander, P. Boland, C. M. Schick, R. M. Lindsay, and S. J. Wiegand. Neuron. 8:983–993 (1992).

    Google Scholar 

  18. R. Rosenfeld, J. S. Philo, M. Haniu, K. Stoney, M. F. Rohde, G.-M. Wu, L. O. Narhi, C. Wong,et al. Protein Science. 2:1664–1674 (1993).

    Google Scholar 

  19. D. J. Glass, S. H. Nye, P. Hantzopoulos, M. J. Macchi, S. P. Squinto, M. Goldfarb, and G. D. Yancopoulos. Cell. 66:405–413 (1991).

    Google Scholar 

  20. E. I. Christensen, H. G. Rennke, and F. A. Carone. Am. J. Physiol. 244:F436–F441 (1983).

    Google Scholar 

  21. W. A. Banks, A. J. Kastin, and C. M. Barrera. Pharm. Res. 8:1345–1350 (1991).

    Google Scholar 

  22. R. H. Fabian, and C. E. Hulsebosch. Brain Res. 611:46–52 (1993).

    Google Scholar 

  23. J. F. Poduslo and G. L. Curran. J. Neurochem 67:734–741 (1996).

    Google Scholar 

  24. S. Zalipsky. Bioconj. Chem. 6:150–165 (1995).

    Google Scholar 

  25. S. M. Chamow, T. P. Kogan, M. Venuti, T. Gadek, R. J. Harris, D. H. Peers, J. Mordenti, S. Shak, and A. Ashkenazi. Bioconj. Chem. 5:133–140 (1994).

    Google Scholar 

  26. J. Huwyler, D. Wu, and W. M. Pardridge. Proc. Natl. Acad. Sci. USA 93:14164–14169 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Pardridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakane, T., Pardridge, W.M. Carboxyl-directed Pegylation of Brain-derived Neurotrophic Factor Markedly Reduces Systemic Clearance with Minimal Loss of Biologic Activity. Pharm Res 14, 1085–1091 (1997). https://doi.org/10.1023/A:1012117815460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012117815460

Navigation