Skip to main content
Log in

Role of Brain Tissue Localized Purine Metabolizing Enzymes in the Central Nervous System Delivery of Anti-HIV Agents 2′-β-Fluoro-2,3′-Dideoxyinosine and 2′-β-Fluoro-2′,3′-Dideoxyadenosine in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study examines the central nervous system (CNS) delivery of 2′-β-fluoro-2′,3′-dideoxyadenosine (F-ddA) and 2′-β-fluoro-2′,3′-dideoxyinosine (F-ddl), acid stable analogues of dideoxyadenosine (ddA) and dideoxyinosine (ddI) having reduced susceptibility to purine salvage pathway enzymes important in the metabolism of ddA and ddI, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP), respectively. Their CNS delivery compared to that for ddI provides insight into the role of brain tissue ADA and PNP in these processes.

Methods. Brain and cerebrospinal fluid (CSF) concentration-time profiles were obtained for F-ddI during and after intravenous infusions of F-ddl, and for both F-ddA and F-ddI after F-ddA infusions in normal rats or rats pre-treated with the ADA inhibitor 2′-deoxycoformycin (DCF). Rate constants for CNS entry, efflux and metabolism were estimated by computer fits using plasma concentration-time profiles as the driving force functions.

Results. The CNS delivery of F-ddI did not differ significantly from that for ddI. F-ddA, which is more lipophilic than F-ddI, provided higher brain (≈ 8×) and CSF (≈ 11×) concentrations of total dideoxynucleoside (F-ddA and F-ddI) compared to F-ddI. Deamination by brain tissue ADA to form F-ddI reduced CNS levels of intact F-ddA but provided higher brain parenchyma (5×) and CSF/plasma (3×) ratios of F-ddI relative to F-ddI controls. Thus, F-ddA functions in part as a CNS-activated prodrug of F-ddI. DCF pre-treatment inhibited brain tissue ADA, abolishing the prodrug effect, and enhancing F-ddA concentrations in both brain parenchyma (5×) and CSF (6×).

Conclusions. PNP metabolism does not appear to play a role in the low CNS delivery of ddI. On the other hand, deamination of F-ddA by brain tissue ADA is an important process, such that F-ddA functions in part as a CNS-activated prodrug of F-ddI. Enhanced CNS uptake of intact F-ddA can be achieved with ADA inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. W. Price and B. J. Brew J. Infect. Dis. 158:1079–1083 (1988).

    PubMed  Google Scholar 

  2. R. W. Price. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 72:1–45 (1994).

    Google Scholar 

  3. K. M. Butler, R. N. Husson, F. M. Balis, P. Brouwers, J. Eddy, D. El-Amin, J. Gress, M. Hawkins, P. Jarosinski, H. Moss, D. Poplack, S. Santacroce, D. Venzon, L. Wiener, P. Wolters, and P. A. Pizzo. New Engl. J. Med. 324:137–144 (1991).

    PubMed  Google Scholar 

  4. P. A. Pizzo, K. Butler, F. Balis, E. Brouwers, M. Hawkins, J. Eddy, M. Einloth, J. Falloon, R. Hussan, P. Jarosinski, J. Meer, H. Moss, D. G. Poplack, S. Santacrose, L. Wiener, and P. Wolters. J. Pediatr. 117:799–808 (1990).

    PubMed  Google Scholar 

  5. P. A. Pizzo, J. Eddy, J. Falloon, F. M. Balis, R. F. Murphy, H. Moss, P. Wolters, P. Brouwers, P. Jarosinski, M. Rubin, S. Broder, R. Yarchoan, A. Brunett, M. Maha, S. Nusinhoff-Lehrman, and D. G. Poplack. N. Engl. J. Med. 319:889–896 (1988).

    PubMed  Google Scholar 

  6. E. Sandstrom and B. Oberg. Drugs 45:488–508 (1993).

    PubMed  Google Scholar 

  7. B. D. Anderson, B. L. Hoesterey, D. C. Baker, and R. E. Galinsky. J Pharmacol. Exp. Ther. 253:113–118 (1990).

    PubMed  Google Scholar 

  8. D. J. Back, S. Ormesher, J. F. Tjia, and R. Macleod. Br. J. Clin. Pharmacol. 33:319–322 (1992).

    PubMed  Google Scholar 

  9. R. E. Parks, Jr., G. W. Crabtree, C. M. Kong, R. P. Agarwal, K. C. Agarwal, and E. M. Scholar. Ann. N.Y. Acad. Sci. 255:412–434 (1975).

    PubMed  Google Scholar 

  10. G. Mistry and G. I. Drummond. J. Mol. Cell Cardiol. 18:13–22 (1986).

    PubMed  Google Scholar 

  11. M. D. Johnson and B. D. Anderson. Pharm. Res. 13:1881–1886 (1996).

    PubMed  Google Scholar 

  12. V. E. Marquez, C. K.-H. Tseng, J. A. Kelley, H. Mitsuya, S. Broder, J. S. Roth, and J. S. Driscoll. Biochem. Pharmacol. 36:2719–2722 (1987).

    PubMed  Google Scholar 

  13. V. E. Marquez, C. K.-H. Tseng, H. Mitsuya, S. Aoki, J. A. Kelley, J. Ford, H., J. S. Roth, S. Broder, D. G. Johns, and J. S. Driscoll. J. Med. Chem. 33:978–985 (1990).

    PubMed  Google Scholar 

  14. G. S. Ahluwalia, D. A. Cooney, T. Shirasaka, H. Mitsuya, J. S. Driscoll, and D. G. Johns. Mol. Pharmacol. 46:1002–1008 (1994).

    PubMed  Google Scholar 

  15. C. L. Zielke and C. H. Suelter. In P. D. Boyer, (ed.) The Enzymes, Academic, London, 1971, vol. 4, pp. 47–78.

    Google Scholar 

  16. T. G. Brady and C. I. O'Donovan. Comp. Biochem. Physiol. 14:101–120 (1965).

    PubMed  Google Scholar 

  17. R. Masood, G. S. Ahluwalia, D. A. Cooney, A. Fridland, V. E. Marquez, J. S. Driscoll, Z. Hao, H. Mitsuya, C. F. Perno, S. Broder, and D. G. Johns. Mol. Pharmacol. 37:590–6 (1990).

    PubMed  Google Scholar 

  18. J. J. Barchi, Jr., V. E. Marquez, J. S. Driscoll, H. Ford, Jr., H. Mitsuya, T. Shirasaka, S. Aoki, and J. A. Kelley. J. Med. Chem. 34:1647–1655 (1991).

    PubMed  Google Scholar 

  19. D. Singhal, M. E. Morgan, and B. D. Anderson. Drug Metab. Disp. 24:1155–1161 (1996).

    Google Scholar 

  20. H. B. Waynforth. Experimental and Surgical Techniques in the Rat, Academic Press, London, 1980.

    Google Scholar 

  21. R. E. Galinsky, K. K. Flaharty, B. L. Hoesterey, and B. D. Anderson. J. Pharmacol. Exp. Ther. 257:972–978 (1991).

    PubMed  Google Scholar 

  22. B. D. Anderson, R. E. Galinsky, D. C. Baker, S.-C. Chi, B. L. Hoesterey, M. E. Morgan, K. Murakami, and H. Mitsuya. J. Control. Rel. 19:219–230 (1992).

    Article  Google Scholar 

  23. M. E. Brewster, W. R. Anderson, D. O. Helton, N. Bodor, and E. Pop. Pharm. Res. 12:796–798 (1995).

    Article  PubMed  Google Scholar 

  24. M. E. Brewster, W. Anderson, and N. Bodor. J. Pharm. Sci. 80:843–846 (1991).

    PubMed  Google Scholar 

  25. M. E. Morgan, S.-C. Chi, K. Murakami, H. Mitsuya, and B. D. Anderson. Antimicrob. Agents Chemother. 36:2156–2165 (1992).

    PubMed  Google Scholar 

  26. N. Clumeck. J. Antimicrob. Chemother. 32:133–138 (1993).

    Google Scholar 

  27. H. Mitsuya, R. Yarchoan, and S. Broder. Sci. 249:1533–1544 (1990).

    Google Scholar 

  28. H. Mitsuya and S. Broder. In R. C. Gallo, G. Jay, (ed.) The Human retoviruses, Academic Press, Inc., San Diego, 1991, 335–378.

    Google Scholar 

  29. D. A. Cooney, G. Ahluwalia, H. Mitsuya, A. Fridland, M. Johnson, Z. Hao, M. Dalal, J. Balzarini, S. Broder, and D. G. Johns. Biochem. Pharmacol. 36:1765–1768 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, D., Morgan, M.E. & Anderson, B.D. Role of Brain Tissue Localized Purine Metabolizing Enzymes in the Central Nervous System Delivery of Anti-HIV Agents 2′-β-Fluoro-2,3′-Dideoxyinosine and 2′-β-Fluoro-2′,3′-Dideoxyadenosine in Rats. Pharm Res 14, 786–792 (1997). https://doi.org/10.1023/A:1012110724604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012110724604

Navigation