Skip to main content
Log in

N-Acyl-(α,γ Diaminobutyric Acid)n Hydrazide as an Efficient Gene Transfer Vector in Mammalian Cells in Culture

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study investigates the structure/activity relationship of a series of N-acyl-peptides (lipopeptides) for the transfection of mammalian cells.

Methods. Lipopeptides comprising 1 to 3 basic amino-acids and a single fatty acid chain were synthesized. Transfecting complexes between lipopeptide, plasmid DNA and dioleoyl phosphatidylethanolamine were prepared and applied on cells in culture. Transfection efficiency was evaluated by measuring β-galactosidase activity 48 h post-transfection. Lipopeptide-DNA binding was also investigated by physical means and molecular modelling.

Results. Besides the length of the fatty acid chain, the nature of the basic amino-acid and the C-terminal group were crucial parameters for high transfection efficiency. The N-acyl-(diaminobutyric acid)n derivatives were the most potent transfecting agents among those tested and induced a β-galactosidase activity 2 to 20 times higher than the N-acyl-lysine, -ornithine or -diaminopropionic acid derivatives. Furthermore, a hydrazide C-terminal modification greatly enhanced transfection efficiency for all compounds tested. The reason why α, γ-diaminobutyric acid hydrazide-based lipopeptides were the most potent in transfection is not fully understood but could be related to their high DNA binding.

Conclusions. Poly- or oligo-diaminobutyric acid containing or not a hydrazide C-terminus could advantageously be used in peptide-based gene delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Behr. Bioconjugate Chem. 5:382–389 (1994).

    Google Scholar 

  2. X. Gao and L. Huang. Gene Ther. 2:710–722 (1995).

    PubMed  Google Scholar 

  3. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Proc. Natl. Acad. Sci. USA 84:7413–7417 (1987).

    PubMed  Google Scholar 

  4. J. Y. Legendre and F. C. Szoka. Pharm. Res. 9:1235–1242 (1992).

    PubMed  Google Scholar 

  5. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. J. Biol. Chem. 270:18997–19007 (1995).

    PubMed  Google Scholar 

  6. J. S. Remy, C. Sirlin, P. Vierling, and J. P. Behr. Bioconjugate Chem. 5:647–654 (1994).

    Google Scholar 

  7. Vogler, P. Lanz, P. Quitt, R. O. Studer, W. Lergier, E. Böhni, and B. Fust. Helv. Chim. Acta 47:526–544 (1964).

    Google Scholar 

  8. E. Atherton and R. C. Scheppard. The Peptides: analysis, synthesis, biology, Vol. 9, Academic Press, New York, 1987.

    Google Scholar 

  9. L. A. Carpino and G. Y. Han. J. Org. Chem. 37:3404–3409 (1972).

    Google Scholar 

  10. R. Knorr, A. Trzeciak, W. Bannwarth, and D. Gillessen. Tetrahedron Lett. 30:1927–1930 (1989).

    Google Scholar 

  11. L. Stamatatos, R. Leventis, N. Zuckerman, and J. R. Silvius. Biochemistry 27:3917–3925 (1988).

    PubMed  Google Scholar 

  12. J. Y. Legendre and A. Supersaxo. Biochim. Biophys. Res. Commun. 217:179–185 (1995).

    Google Scholar 

  13. K. P. Ananthapadmanabhan, E. D. Goddard, N. J. Turro and P. L. Kuo. Langmuir 1:352–355 (1985).

    Google Scholar 

  14. H. Gershon, R. Ghirlando, S. B. Guttman, and A. Minsky. Biochemistry 32:7143–7151 (1993).

    PubMed  Google Scholar 

  15. P. R. Gerber and K. Mueller. J. Comput. Aided Mol. Des. 9:251–268 (1995).

    PubMed  Google Scholar 

  16. H. M. Berman, W. K. Olson, D. L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S. H. Hsieh, A. R. Srinivasan, and B. Schneider. Biophys. J. 63:751–759 (1992).

    PubMed  Google Scholar 

  17. N. Schmidt and J. P. Behr. Biochemistry 30:4347–4361 (1991).

    Google Scholar 

  18. W. Yang and T. A. Steitz. Cell 82:193–207 (1995).

    PubMed  Google Scholar 

  19. R. P. Balasubramaniam, M. J. Bennett, A. M. Aberle, J. G. Malone, M. H. Nantz, and R. W. Malone. Gene Ther. 3:163–172 (1996).

    PubMed  Google Scholar 

  20. H. Farhood, N. Serbina, and L. Huang. Biochim. Biophys. Acta 1235:289–295 (1995).

    PubMed  Google Scholar 

  21. H. Ellens, J. Bentz, and F. C. Szoka. Biochemistry 23:1532–1538 (1984).

    PubMed  Google Scholar 

  22. J. Y. Legendre and F. C. Szoka. Proc. Natl. Acad. Sci. USA 90:893–897 (1993).

    PubMed  Google Scholar 

  23. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin and P. L. Felgner. J. Biol. Chem. 269:2550–2561 (1994).

    PubMed  Google Scholar 

  24. E. Wagner, M. Cotten, R. Foisner and M. Birnstiel. Proc. Natl. Acad. Sci. USA 88:4255–4259 (1991).

    PubMed  Google Scholar 

  25. X. Zhou and L. Huang. Biochim. Biophys. Acta 1189:195–203 (1994).

    PubMed  Google Scholar 

  26. E. Wagner, D. Curiel, and M. Cotten. Adv. Drug Deliv. Rev. 14:113–135 (1994).

    Article  Google Scholar 

  27. C. J. Chu, J. Dijkstra, M. Z. Lai, K. Hong and F. C. Szoka. Pharm. Res. 7:824–834 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legendre, JY., Trzeciak, A., Bur, D. et al. N-Acyl-(α,γ Diaminobutyric Acid)n Hydrazide as an Efficient Gene Transfer Vector in Mammalian Cells in Culture. Pharm Res 14, 619–624 (1997). https://doi.org/10.1023/A:1012105128722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012105128722

Navigation