Skip to main content
Log in

The Effect of β-Turn Structure on the Permeation of Peptides Across Monolayers of Bovine Brain Microvessel Endothelial Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the effects of the β-turn structure of a peptide on its permeation via the paracellular and transcellular routes across cultured bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the blood-brain barrier (BBB).

Methods. The effective permeability coefficients (Peff) of the model peptides were determined across BBMEC monolayers. The dimensions of the aqueous pores in the tight junctions (TJs) of the BBMEC monolayers were determined using a series of hydrophilic permeants. This value and the molecular radius of each peptide were used to calculate the theoretical paracellular (PP *) and transcellular (PT *) permeability coefficients for each peptide.

Results. A comparison of the theoretical PP * values with the observed Peff values was made for a series of model peptides. For the most hydrophobic peptides (Ac-PheProXaaIle-NH2 and Ac-PheProXaaIleVal-NH2; Xaa = Gly, Ile), it was concluded that the Gly-containing peptide of each pair more readily permeates BBMEC monolayers via the transcellular pathway than the Ile-containing analog. In addition, the Gly-containing peptides, which exhibit more β-turn structure, were shown to be more lipophilic than the Ile-containing peptides as estimated by the log of their l-octanol:HBSS partition coefficients (log Po/w). However, the three hydrophilic peptide pairs (Ac-TyrProXaaAspVal-NH2, Ac-TyrProXaaAsnVal-NH2, and Ac-TyrProXaaIleVal-NH2; Xaa = Gly, Ile) were found to permeate BBMEC monolayers predominantly via the paracellular pathway. No differences were observed in the Peff values of the hydrophilic peptides having higher β-turn structures as compared to the peptides lacking these structural features. In addition, the Ile-containing peptides exhibited significantly higher log Po/w values than the Gly-containing hydrophilic peptides.

Conclusions. Hydrophobic peptides that exhibit significant β-turn structure in solution are more lipophilic as measured by log Po/w, and more readily permeate BBMEC monolayers via the transcellular route than hydrophobic peptides that lack this type of solution structure. Similar secondary structural features in hydrophilic peptides do not appear to sufficiently alter the physicochemical properties of the peptides so as to alter their paracellular flux through BBMEC monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. M. Pardridge (ed.). Peptide Drug Delivery to the Brain, Raven Press, New York; 1991.

    Google Scholar 

  2. K. L. Audus, P. J. Chikhale, D. W. Miller, S. E. Thompson, and R. T. Borchardt. in B. Testa (ed.), Advances in Drug Research: Volume 23, Harcourt Brace Jovanovich, London; 1992, pp. 1-64.

    Google Scholar 

  3. D. J. Begley. J. Controlled Release 29:293-306 (1994).

    Google Scholar 

  4. M. W. Brightman. Exp. Eye Res. 25:1-25 (1977).

    Article  Google Scholar 

  5. B. Schlosshauer. BioEssays 15:341-346 (1993).

    PubMed  Google Scholar 

  6. W. M. Pardridge (ed.). The Blood-Brain Barrier: Cellular and Molecular Biology, Raven Press, New York; 1993.

    Google Scholar 

  7. G. W. Goldstein and A. L. Betz. Scientific American 255:70-79 (1986).

    Google Scholar 

  8. J. D. Fenstermacher and J. A. Johnson. Am. J. Physiol. 211:341-346 (1966).

    PubMed  Google Scholar 

  9. W. M. Pardridge. Physiol. Rev. 63:1481-1535 (1983).

    PubMed  Google Scholar 

  10. E. G. Chikhale, P. S. Burton, and R. T. Borchardt. J. Pharmacol. Exp. Ther. 273:298-303 (1995).

    PubMed  Google Scholar 

  11. W. M. Pardridge. in M. D. Taylor and G. L. Amidon (eds.), Peptide-Based Drug Design, American Chemical Society, Washington, D.C.; 1995, pp. 265-296.

    Google Scholar 

  12. W. M. Pardridge. Adv. Drug Del. Rev. 15:3-36 (1995).

    Google Scholar 

  13. W. A. Banks and A. J. Kastin. Brain Res. Bull. 15:287-292 (1985).

    PubMed  Google Scholar 

  14. E. G. Chikhale, K. Y. Ng, P. S. Burton, and R. T. Borchardt. Pharm. Res. 11:412-419 (1994).

    PubMed  Google Scholar 

  15. G. M. Pauletti, F. W. Okumu, and R. T. Borchardt. Pharm. Res. 14:164-168 (1997).

    PubMed  Google Scholar 

  16. F. W. Okumu, G. M. Pauletti, D. G. Vander Velde, T. J. Siahaan, and R. T. Borchardt. Pharm. Res. 14:169-175 (1997).

    PubMed  Google Scholar 

  17. S. Gangwar, S. D. S. Jois, T. J. Siahaan, D. G. Vander Velde, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1657-1662 (1996).

    PubMed  Google Scholar 

  18. G. M. Pauletti, S. Gangwar, F. W. Okumu, T. J. Siahaan, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1615-1623 (1996).

    PubMed  Google Scholar 

  19. G. T. Knipp, D. G. Vander Velde, T. J. Siahaan, and R. T. Borchardt. Pharm. Res. 14:1332-1340 (1997).

    PubMed  Google Scholar 

  20. K. L. Audus and R. T. Borchardt. Pharm. Res. 3:81-87 (1986).

    Google Scholar 

  21. K. L. Audus and R. T. Borchardt. Ann N. Y. Acad. Sci. 507:9-18 (1987).

    PubMed  Google Scholar 

  22. J. B. M. M. van Bree, A. G. de Boer, M. Danhof, L. A. Ginsel, and D. D. Breimer, J. Pharmacol. Exp. Ther. 247:1233-1239 (1988).

    PubMed  Google Scholar 

  23. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. J. Pharm. Sci. 83:1529-1536 (1994).

    PubMed  Google Scholar 

  24. K. L. Audus, L. Ng, W. Wang, and R. T. Borchardt. in P. L. Smith, R. T. Borchardt, and G. Wilson (eds.), Models for Assessing Drug Absorption and Metabolism, Plenum Press, New York; 1996, pp. 239-258.

    Google Scholar 

  25. G. T. Knipp, N. F. H. Ho, C. L. Barsuhn, and R. T. Borchardt. J. Pharm. Sci. 86 (1997). In press.

  26. T. J. Raub, S. L. Kuentzel, and G. A. Sawada. Exp. Cell Res. 199:330-340 (1992).

    PubMed  Google Scholar 

  27. J.-H. Tao-Cheng, Z. Nagy, and M. W. Brightman. J. Neuroscience 7:3293-3299 (1987).

    Google Scholar 

  28. J. Laterra, C. Guerin, and G. W. Goldstein. J. Cell. Physiol. 144:204-215 (1990).

    PubMed  Google Scholar 

  29. D. Eisenberg, M. Wesson, and W. Wilcox. in G. Fasman (ed.), Prediction of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York; 1989, pp. 635-646.

    Google Scholar 

  30. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, M. Mackay, and P. Artursson. J. Controlled Release 11:25-40 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Borchardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorensen, M., Steenberg, B., Knipp, G.T. et al. The Effect of β-Turn Structure on the Permeation of Peptides Across Monolayers of Bovine Brain Microvessel Endothelial Cells. Pharm Res 14, 1341–1348 (1997). https://doi.org/10.1023/A:1012104301773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012104301773

Navigation