Skip to main content
Log in

Iontophoresis of Poly-L-lysines: The Role of Molecular Weight?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. (1) To determine the extent of iontophoretic transport as a function of molecular weight (MW) of the penetrant; and (2) to visually and quantitatively characterize the iontophoretic transport pathways (follicular (F) versus nonfollicular (NF)) of the fluorescently-labeled poly-L-lysines employed.

Methods. A series of fluorescently-labeled poly-L-lysines (FITC-PLLs) [4 KDa, 7 KDa and 26 KDa] were used to study the extent and distribution of iontophoretic skin penetration as a function of MW using laser scanning confocal microscopy (LSCM).

Results. It was found that, relative to the passive controls, and under the electrical conditions considered, iontophoresis greatly enhanced the penetration of the 4 KDa analog, slightly elevated the delivery of the 7 KDa FITC-PLL, but had no effect on the transport of the larger 26 KDa FITC-PLL. Quantitative analyses of LSCM images revealed that iontophoresis increased transport via F pathways only slightly more than that through NF pathways for the 4 KDa and 7 KDa FITC-PLL molecules.

Conclusions. It is visually apparent that the iontophoretic transport pathways taken are importantly determined by the physicochemical properties (including size and charge) of the penetrant. The results presented here demonstrate an inverse dependence of iontophoretic delivery upon the MW of the penetrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Delgado-Charro and R. H. Guy, (1997) in Electronically-Controlled Drug Delivery, eds. B. Berner & S. M. Dinh, (CRC Press, Boca Raton, FL), in press.

    Google Scholar 

  2. M. Clemessy, G. Couarraze, B. Bevan, and F. Puisieux. Pharm. Res. 12:998-1002 (1995).

    PubMed  Google Scholar 

  3. M. C. Heit, N. A. Monteiro-Riviere, F. L. Jayes, and J. E. Riviere. Pharm. Res. 11:1000-3 (1994).

    PubMed  Google Scholar 

  4. O. Siddiqui, Y. Sun, J. Liu, and Y. Chien. J. Pharm. Sci. 76:341-345 (1987).

    PubMed  Google Scholar 

  5. P. Lelawongs, J. C. Liu, and Y. W. Chien. Int. J. Pharm. 61:179-188 (1990).

    Google Scholar 

  6. R. R. Burnette and D. Marrero. J. Pharm. Sci. 75:738-743 (1986).

    PubMed  Google Scholar 

  7. K. R. Oldenburg, K. T. Vo, G. A. Smith, and H. E. Selick. J Pharm Sci. 84:915-21 (1995).

    PubMed  Google Scholar 

  8. N. Yoshida and M. Roberts. J. Control. Rel. 25:177-195 (1993).

    Google Scholar 

  9. S. Leduc. Ann. D'Electrobiol. 3:545-560 (1990).

    Google Scholar 

  10. P. Wertz and D. Downing. Science. 217:1261-1262 (1982).

    PubMed  Google Scholar 

  11. N. G. Turner and R. H. Guy. J. Invest. Derm. submitted (1997).

  12. P. Glikfeld, C. Cullander, R. S. Hinz, and R. H. Guy. Pharm. Res. 5:443-446 (1988).

    Google Scholar 

  13. J. Keister and G. Kasting. J. Control. Rel. 4:111-117 (1986).

    Google Scholar 

  14. H. Abramson and M. Engel. Arch. Dermatol. Syphilol. 44:190-200 (1942).

    Google Scholar 

  15. H. Abramson and M. Gorin. J. Phys. Chem. 44:1094-1102 (1940).

    Google Scholar 

  16. R. R. Burnette and B. Ongpipattanakul. J. Pharm. Sci. 76:765-773 (1987).

    PubMed  Google Scholar 

  17. S. Grimnes. Acta. Derm. Ven. (Stockh). 64:93-98 (1984).

    Google Scholar 

  18. E. R. Scott, A. I. Laplaza, H. S. White, and J. B. Phipps. Pharm. Res. 10:1699-1709 (1993).

    PubMed  Google Scholar 

  19. C. Cullander and R. H. Guy. Solid State Ionics. 53–56:197-206 (1992).

    Google Scholar 

  20. R. R. Burnette and B. Ongpipattanakul. J. Pharm. Sci. 77:132-137 (1988).

    PubMed  Google Scholar 

  21. C. Cullander and R. H. Guy. J. Invest. Derm. 97:55-64 (1991).

    PubMed  Google Scholar 

  22. G. T. McEwan, M. A. Jepson, B. H. Hirst, and N. L. Simmons. Biochim. Biophys. Acta. 1148:51-60 (1993).

    PubMed  Google Scholar 

  23. H. Takahashi, S. Matuoka, S. Kato, K. Ohki, and I. Hatta. Biochim. Biophys. Acta. 1110:29-36 (1992).

    PubMed  Google Scholar 

  24. M. B. Delgado-Charro and R. H. Guy. Pharm Res. 11:929-35 (1994).

    PubMed  Google Scholar 

  25. A. J. Hoogstraate, V. Srinivasan, S. M. Simms, and W. I. Higuchi. J. Control. Rel. 31:41-47 (1994).

    Google Scholar 

  26. M. B. Delgado-Charro, A. M. Rodríguez-Bayón, and R. H. Guy. J. Control. Rel. 35:35-40 (1995).

    Google Scholar 

  27. J. Hirvonen and R. H. Guy. J. Control. Rel. in press (1997).

  28. M. Pikal. Adv. Drug Del. Rev. 9:201-237 (1992).

    Google Scholar 

  29. P. G. Green, R. S. Hinz, A. Kim, F. C. Szoka, and R. H. Guy. Pharm. Res. 8:1121-1127 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, N.G., Ferry, L., Price, M. et al. Iontophoresis of Poly-L-lysines: The Role of Molecular Weight?. Pharm Res 14, 1322–1331 (1997). https://doi.org/10.1023/A:1012100100865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012100100865

Navigation