Skip to main content
Log in

Assembly and Dissociation of Human Insulin and LysB28ProB29-Insulin Hexamers: A Comparison Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Investigations into the kinetic assembly and dissociation of hexameric LysB28ProB29-human insulin (LysPro), a rapid-acting insulin analog produced by the sequence inversion of amino acids at positions B28 and B29, were designed to explain the impact that the sequence inversion has on the formulation and pharmacokinetics of the insulin analog.

Methods. The kinetics of phenolic ligand binding to human insulin and LysPro were studied by stopped-flow spectroscopy. The kinetics of R6 hexamer disruption were studied by extraction of Co(II) with EDTA.

Results. Phenolic ligand binding to human insulin yielded rate constants for a fast and slow phase that increased with increasing ligand concentration and are attributed to the T6 → T3R3 and T3R3 → R6 transitions, respectively. However, the kinetics of phenolic ligand binding with LysPro was dominated by rates of hexamer assembly. The kinetic differences between the insulin species are attributed to alterations at the monomer-monomer interface in the dimer subunit of the LysPro analog. The extraction of Co(II) from both hexameric complexes by EDTA chelation is slow at pH 8.0 and highly dependent on ligand concentration. Cobalt extraction from LysPro was pH dependent. Of the various phenolic ligands tested, the relative affinities for binding to the human and LysPro hexamer are resorcinol > phenol > m-cresol.

Conclusions. The extraction data support the formation of an R6-type LysPro hexamer under formulation conditions, i.e., in the presence of divalent metal and phenolic ligand, that is similar in nature to that observed in insulin. However, the formation kinetics of LysPro identify a radically different monomeric assembly process that may help explain the more rapid pharmacokinetics observed with the hexameric formulation of LysPro insulin relative to human insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Brange and L. Langkjaer. Acta Pharm. Nord. 4:149–158 (1992).

    PubMed  Google Scholar 

  2. U. Derewenda, Z. Derewenda, E. J. Dodson, G. G. Dodson, C. D. Reynolds, G. D. Smith, C. Sparks, and D. Swenson. Nature 338:594–596 (1989).

    PubMed  Google Scholar 

  3. A. Wollmer, B. Rannefeld, B. R. Johansen, K. R. Hejnaes, P. Baldschmidt, and F. B. Hansen. Biol. Chem. Hoppe-Seyler 368:903–911 (1987).

    PubMed  Google Scholar 

  4. G. D. Smith and E. Ciszak. P.N.A.S. 91:8851–8855 (1994).

    PubMed  Google Scholar 

  5. E. N. Baker, T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. M. C. Hodgkin, R. E. Hubbard, N. W. Isaacs, C. D. Reynolds, K. Sakabe, N. Sakabe, and N. M. Vijayan. Phil. Trans. R. Soc. Lond. B 319:369–456 (1988).

    Google Scholar 

  6. E. Ciszak, J. M. Beals, B. H. Frank, J. C. Baker, N. D. Carter, and G. D. Smith. Structure 3:615–622 (1995).

    PubMed  Google Scholar 

  7. M. L. Brader and M. F. Dunn. TIBS 16:341–345 (1991).

    PubMed  Google Scholar 

  8. M. Roy, M. L. Brader, R. W.-K. Lee, N. C. Kaarsholm, J. F. Hansen, and M. F. Dunn. J. Biol. Chem. 264:19081–19085 (1989).

    PubMed  Google Scholar 

  9. P. Krüger, G. Gilge, Y. Çabuk, and A. Wollmer. Biol. Chem. Hoppe-Seyler 371:669–673 (1990).

    PubMed  Google Scholar 

  10. N. C. Kaarsholm, H.-C. Ko, and M. F. Dunn. Biochemistry 28:4427–4435 (1989).

    PubMed  Google Scholar 

  11. N. C. Kaarsholm and M. F. Dunn. Biochemistry 26:883–890 (1987).

    PubMed  Google Scholar 

  12. Y. Karatas, P. Krüger, and A. Wollmer. Biol. Chem. Hoppe-Seyler 372:1035–1038 (1991).

    PubMed  Google Scholar 

  13. M. C. Storm and M. F. Dunn. Biochemistry 24:1749–1756 (1985).

    PubMed  Google Scholar 

  14. D. N. Brems, L. A. Alter, M. J. Beckage, R. E. Chance, R. D. DiMarchi, L. K. Green, H. B. Long, A. H. Pekar, J. E. Shields, and B. H. Frank. Protein Engineering 5:527–533 (1992).

    PubMed  Google Scholar 

  15. D. L. Bakaysa, J. Radziuk, H. A. Havel, M. L. Brader, S. L. Edwards, S. W. Dodd, J. M. Beals, A. H. Pekar, and D. N. Brems. Physiochemical basis for the rapid time-action of LysB28ProB29-Insulin: Dissociation of a protein ligand complex. Protein Sci.: in press.

  16. E. Ciszak, D. Langs, J. M. Beals, B. H. Frank, and G. D. Smith. A novel crystal form of LysPro insulin. In American Crystallographic Association Annual Meeting, Montreal, American Crystallographic Association, 1995.

    Google Scholar 

  17. D. C. Howey, R. R. Bowsher, R. L. Brunelle, and J. R. Woodworth. Diabetes 43:396–402 (1994).

    PubMed  Google Scholar 

  18. J. Brange, D. R. Owens, S. Kang, and A. Volund. Diabetes Care 13:923–954 (1990).

    PubMed  Google Scholar 

  19. B. H. Frank and A. J. Veros. Biochem. Biophys. Res. Com. 32:155–160 (1968).

    PubMed  Google Scholar 

  20. K. E. van Holde. Physical Biochemistry. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985, pp. 110–136.

    Google Scholar 

  21. L. Gross and M. F. Dunn. Biochemistry 31:1295–1301 (1992).

    PubMed  Google Scholar 

  22. P. Brzovic S., W. E. Choi, D. Borchardt, N. C. Kaarsholm, and M. F. Dunn. Biochemistry 33:13057–13069 (1994).

    PubMed  Google Scholar 

  23. A. Wollmer, B. Rannefeld, J. Stahl, and S. G. Melberg. Biol. Chem. Hoppe-Seyler 370:1045–1053 (1989).

    PubMed  Google Scholar 

  24. E. Jacoby, P. Kruger, Y. Karatas, and A. Wollmer. Biol. Chem. Hoppe-Seyler 374:877–885 (1993).

    PubMed  Google Scholar 

  25. C. R. Bloom, W. E. Choi, P. S. Brzovic, J. J. Ha, S. T. Huang, N. C. Kaarsholm, and M. F. Dunn. J. Mol. Biol. 245:324–330 (1995).

    PubMed  Google Scholar 

  26. A. D. Varshavsky, J. M. Beals, D. T. Birnbaum, S. W. Dodd, and B. E. Saxberg. A combined optimization strategy in mathematical modeling of phenolic ligand binding to the insulin hexamer. Math. Modeling and Sci. Computing: in press.

  27. D. T. Birnbaum, S. W. Dodd, B. E. H. Saxberg, A. D. Varshavsky, and J. M. Beals. Biochemistry 35:5366–5378 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnbaum, D.T., Kilcomons, M.A., DeFelippis, M.R. et al. Assembly and Dissociation of Human Insulin and LysB28ProB29-Insulin Hexamers: A Comparison Study. Pharm Res 14, 25–36 (1997). https://doi.org/10.1023/A:1012095115151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012095115151

Navigation