Abstract
The paper describes some basic geometric tools to construct bilipschitz embeddings of metric spaces into (finite-dimensional) Euclidean or hyperbolic spaces. One of the main results implies the following: If X is a geodesic metric space with convex distance function and the property that geodesic segments can be extended to rays, then X admits a bilipschitz embedding into some Euclidean space iff X has the doubling property, and X admits a bilipschitz embedding into some hyperbolic space iff X is Gromov hyperbolic and doubling up to some scale. In either case the image of the embedding is shown to be a Lipschitz retract in the target space, provided X is complete.
This is a preview of subscription content,
to check access.References
[ABi] Alexander, S. B. and Bishop, R. L.: The Hadamard Cartan theorem in locally con-vex metric spaces, Enseign. Math. 36 (1990), 309-320.
[Al] Almgren, F. J.: The homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.
[AmK] Ambrosio, L. and Kirchheim, B.: Currents in metric spaces, Acta Math. 185 (2000), 1-80.
[As1] Assouad, P.: Étude d'une dimension métrique liée à la possibilitéde plongement dans ℝ”, C. R. Acad. Sci. Paris 288 (1979), 731-734.
[As2] Assouad, P.: Plongements Lipschitziens dans ℝ”, Bull. Soc. Math. France 111 (1983), 429-448.
[B] Berestovskii, V. N.: Introduction of a Riemannian structure in certain metric spaces, Siberian Math. J. 16 (1975), 210-221.
[BoS] Bonk, M. and Schramm, O.: Embeddings of Gromov hyperbolic spaces, Preprint.
[BrH] Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-Positive Curvature, Springer, New York, 1999.
[C] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 413-460.
[G1] Gromov, M.: Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147.
[G2] Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math. 152, Birkhäuser, 1999.
[HuW] Hurewicz, W. and Wallman, H.: Dimension Theory, Princeton Univ. Press, 1948.
[L] Laakso, T. J.: Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaréinequality, Geom. Funct. Anal. 10 (2000), 111-123.
[La] Lang, U.: Higher-dimensional linear isoperimetric inequalities in hyperbolic groups, Internat. Math. Res. Notices 2000, 709-717.
[La+] Lang, U., Pavlović, B. and Schroeder, V.: Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000), 1527-1553.
[Lu] Luosto, K.: Ultrametric spaces bi-Lipschitz embeddable in ℝ”, Fundam. Math. 150 (1996), 25-42.
[Luu] Luukainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 23-76.
[LuuMo] Luukainen, J. and Movahedi-Lankarani, H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fundam. Math. 144 (1994), 181-193.
[M] McShane, E. J.: Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[P] Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1-60.
[Pa] Pauls, S. D.: The large scale geometry of nilpotent Lie groups, Preprint.
[Se1] Semmes, S.: Bi-Lipschitz mappings and strong A∞ weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 211-248.
[Se2] Semmes, S.: On the nonexistence of bilipschitz parameterizations and geometric problems about A ∞-weights, Rev. Mat. Iberoamer. 12 (1996), 337-410.
[Se3] Semmes, S.: Metric spaces and mappings seen at many scales, Appendix B in [G2].
[Se4] Semmes, S.: Bilipschitz embeddings of metric spaces into Euclidean spaces, Publ. Mat. 43 (1999), 571-653.
[St] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
[We] Wenger, S.: Isoperimetric inequalities in weakly convex metric spaces, diploma thesis, ETH Zürich, March, 2000.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lang, U., Plaut, C. Bilipschitz Embeddings of Metric Spaces into Space Forms. Geometriae Dedicata 87, 285–307 (2001). https://doi.org/10.1023/A:1012093209450
Issue Date:
DOI: https://doi.org/10.1023/A:1012093209450