Skip to main content
Log in

Kinetics of aerobic cometabolism of chlorinated solvents

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The objectives of this paper are to review the wide range of kinetic models that have been introduced to describe the cometabolic oxidation of chlorinated solvents, to compare modeling approaches and associated experimental data, and to discuss knowledge gaps in the general topic of cometabolism kinetics. To begin, a brief description of the mechanism of oxygenase enzyme metabolism and its qualitative effects on cometabolic degradation kinetics is given. Next, a variety of kinetic expressions that have been used to describe cometabolism, ranging from adaptations of simple metabolic relationships to the development of complex equations that account for intracellular concentrations of key reaction species, are presented. A large number of kinetic coefficients published for a variety of oxygenase populations degrading a broad range of chlorinated solvents are categorized and compared. The discussion section of the paper contains an exploration of knowledge gaps that exist in our understanding of the kinetics of aerobic chlorinated solvent cometabolism. Specific topics covered include: • the use of half saturation constants (Ksc and Ksg) as estimates for inhibition constants (Kisc and Kisg) in saturation modeling expressions, • the specific nature of chlorinated solvent induced product toxicity and the capability for cells to recover from toxic effects, and • methods for incorporating reducing energy limitations into cometabolism models. Finally, the applicability of the broad range of kinetic modeling approaches to scale-up and field applications for in situ bioremediation of chlorinated solvents is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba S, Shoda M & Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotech and Bioeng. 10: 845-864

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, CA

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991a) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228-235

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991b) A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25: 1381-1386

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991c) Two-stage dispersedgrowth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387-1393

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991d) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation bymethanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031-1037

    Google Scholar 

  • Alvarez-Cohen L, McCarty PL, Boulygina E, Hanson RS, Brusseau GA & Tsien HC (1992) Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl. Environ. Microbiol. 58: 1886-1893

    Google Scholar 

  • Alvarez-Cohen L (1993) Application of methanotrophic oxidations for the bioremediation of chlorinated organics. In JC Murrell & DP Kelly (eds) Microbial growth on C1 compounds (pp. 337-350). Amer. Soc. for Microbiol. Washington, DC

    Google Scholar 

  • Anderson JE & McCarty PL (1994) Model for treatment of trichloroethylene by methanotrophic biofilms. J. Environ. Eng. 120: 379-400

    Google Scholar 

  • Anderson JE & McCarty PL (1996) Effect of three chlorinated ethenes on growth rates for a methanotrophic mixed culture. Environ. Sci. Technol. 30: 3517-3524

    Google Scholar 

  • Anderson JE & McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 63: 687-693

    Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press. London, England

    Google Scholar 

  • Arcangeli J-P & Arvin E (1997) Modeling of the cometabolic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system. Environ. Sci. Technol. 31: 3044-3052

    Google Scholar 

  • Arciero D, Vannelli T, Logan M & Hooper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 159: 640-643

    Google Scholar 

  • Arp DJ, Yeager CM & Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12: 81-103 (this issue)

    Google Scholar 

  • Arvin E (1991) Biodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor. Wat. Res. 25: 873-881

    Google Scholar 

  • Aziz CE, Georgiou G & Speitel GE Jr (1999) Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures Using M. trichosporium OB3b PP358. Biotechnology and Bioengineering 65: 100-107

    Google Scholar 

  • Bailey JE & Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill Publishing Co., New York

    Google Scholar 

  • Bazua CD & Wilke CR (1977) Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotech. and Bioeng. Symp. No. 7. Wiley and Sons, New York, pp. 119-128

    Google Scholar 

  • Bielefeldt AR, Stensel HD & Strand SE (1995) Cometabolic degradation of TCE and DCE without intermediate toxicity. J. Environmental Engineering, ASCE 121: 791-797

    Google Scholar 

  • Blanch HW & Clark DS (1996) Biochemical Engineering. M. Dekker Publishers, New York

    Google Scholar 

  • Broholm K, Jensen BK, Christensen TH & Olsen L (1990) Toxicity of 1,1,1-trichloroethane and trichloroethene on a mixed culture of methane-oxidizing bacteria. Appl. Environ. Microbiol. 56: 2488-2493

    Google Scholar 

  • Broholm K, Christensen TH & Jensen BK (1992) Modeling TCE degradation by a mixed culture of methane-oxidizing bacteria. Water Res. 9: 1177-1185

    Google Scholar 

  • Chang H-L & Alvarez-Cohen L (1995a) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotech. Bioeng. 45: 440-449

    Google Scholar 

  • Chang H-L & Alvarez-Cohen L (1995b) Model for the cometabolic biodegradation of chlorinated organics. Environ. Sci. Technol. 29: 2357-2367

    Google Scholar 

  • Chang H-L & Alvarez-Cohen L (1996) The biodegradation of individual and multiple chlorinated aliphatics by mixed and pure methane oxidizing cultures. Applied and Environmental Microbiology 62(9): 3371-3377.

    Google Scholar 

  • Chang H-L & Alvarez-Cohen L (1997) Two-stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Research 31: 2026-2036

    Google Scholar 

  • Chang M-K, Voice TC & Criddle CS (1993) Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotech. Bioeng. 41: 1057-1065

    Google Scholar 

  • Chang W-K & Criddle CS (1997), Experimental evaluation of a model for cometabolism: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotech. Bioeng. 56: 491-501

    Google Scholar 

  • Chu K-H & Alvarez-Cohen L (1996) Trichloroethylene degradation by methane-oxidizing cultures grown with various nitrogen sources. Water Environment Research 68: 76-82

    Google Scholar 

  • Chu K-H & Alvarez-Cohen L (1998) Effect of nitrogen source on growth and TCE degradation by methane oxidizing bacteria. Applied and Environmental Microbiology 65(2): 766-772

    Google Scholar 

  • Cornish-Bowden A (1976) Principles of enzyme kinetics. Butterworths, Boston

    Google Scholar 

  • Criddle CS (1993) The kinetics of cometabolism. Biotech. Bioeng. 41: 1048-1056

    Google Scholar 

  • Dabrock B, Riedel J, Bertram J & Gottschalk G (1992) Isopropylbenzene (cumene)-a new substrate for the isolation of trichloroethylene degrading bacteria. Arch. Microiol. 158: 9-13

    Google Scholar 

  • Dalton H & Higgins IJ (1986) Physiology and biochemistry of methylotrophic bacteria. In Microbial growth on C1 compounds. Proc. 6th international symposium, Amer. Soci. Microbiol. Washington DC

  • Dalton H & Stirling DI (1982) Co-metabolism. Phil. Trans. Roy. Soc. Lond. B. 297: 481-496

    Google Scholar 

  • de Blanc PC. McKinney DC & Speitel GE Jr (1996a) Modeling subsurface biodegradation of non-aqueous phase liquids. In MY Coaragcioglu (ed) Advances in porous media, Volume 3 (pp. 1-82). Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  • de Blanc PC, McKinney DC, Speitel GE Jr, Sepehrnoori K & Delshad M (1996b) A three-dimensional, multi-component model of non-aqueous phase liquid flow and biodegradation in porous media. In LN Reddi (ed) Non-aqueous phase liquids (NAPLs) in the subsurface environment: Assessment and remediation. American Society of Civil Engineers, N ew York de Blanc PC (1998) Personal communication

  • DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME & Krema CL (1992) Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II, and type X methanotrophs. Biodegradation 2: 151-164

    Google Scholar 

  • Dolan ME & McCarty PL (1995a) Small-column microcosm for assessing methane-stimulated vinyl chloride transformation in aquifer samples. Environ. Sci. Technol. 29: 1892-1897

    Google Scholar 

  • Dolan ME & McCarty PL (1995b) Methanotrophic chloroethene transformation capacities and 1,1-dichloroethene transformation product toxicity. Environ. Sci. Technol. 29: 2741-2747

    Google Scholar 

  • El-Farhan YH, Scow KM, de Jonge LW, Rolston DE & Moldrup P (1998) Coupling transport and biodegradation of toluene and trichloroethylene in unsaturated soils. Water Resources Research 34: 437-445

    Google Scholar 

  • Ely RL, Williamson KJ, Guenther RB, Hyman MR & Arp DJ (1995a) A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: I. Model development, analysis and testing. Biotech. Bioeng. 46: 218-231

    Google Scholar 

  • Ely RL, Hyman MR, Arp, DJ, Guenther RB & Williamson KJ (1995b) A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotech. Bioeng. 46: 232-245

    Google Scholar 

  • Ely RL, Williamson KJ & Arp DJ (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics substrate interactions, toxicity effects, and bacterial response. Biotech. Bioeng. 54: 520-534

    Google Scholar 

  • Ensign SA, Hyman MR & Arp DJ (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain., Appl. Environ. Microbiol. 58: 3038-3046.

    Google Scholar 

  • Ewers JD, Freier-Schroder & Knackmuss H-J (1990) Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch Microbiol. 154: 410-413

    Google Scholar 

  • Fitch MW, Speitel GE Jr & Georgiou G (1996) Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol. 26: 1124-1128

    Google Scholar 

  • Fliermans CB, Phelps TJ, Rinfelberf D, Mikell AT & White DC (1988) Mineralization of trichloroethylene by heterotrophic enrichment cultures. Appl. Environ. Microbiol. 54: 1709-1714

    Google Scholar 

  • Fogel MM, Taddeo AR & Fogel S (1986) Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51: 720-774

    Google Scholar 

  • Folsom BR, Chapman PJ & Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279-1285

    Google Scholar 

  • Folsom BR & Chapman PJ (1991) Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl. Environ. Microbiol. 57: 1602-1608

    Google Scholar 

  • Forstner U & Wittman GTW (1979) Metal pollution in the aquatic environment. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Fox BG, Borneman JG, Wackett LP & Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental applications. Biochem. 29: 6419-6427

    Google Scholar 

  • Gälli R & McCarty PL (1989) Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. Strain TCAIIB. Appl. Environ. Microbiol. 55: 845-851

    Google Scholar 

  • Hanson RS & Hanson TE (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439-471

    Google Scholar 

  • Harker AR & Kim Y (1990) Trichloroethylene degradation by two independent aromatic degrading pathways in Alcaligenes eutrophus JMP 134. Appl. Environ. Microbiol. 56: 1179-1181

    Google Scholar 

  • Heald S & Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida, Appl. Environ. Microbiol. 60: 4634-4637

    Google Scholar 

  • Henry SM & Grbic-Galic D (1990) Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophs. Microbial Ecology 20: 151-169

    Google Scholar 

  • Henry SM & Grbic-Galic D (1991) Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl. Environ. Microbiol. 57: 236-244

    Google Scholar 

  • Hopkins GD, Munakata J, Semprini L & McCarty PL (1993) Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms. Environ. Sci. Technol. 27: 2542-2547

    Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36: 146-155

    Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ & Arp DJ (1995) Inhibition, inactivation and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487

    Google Scholar 

  • Jenal-Wanner U & McCarty PL (1997) Development and evaluation of semi-continuous slurry microcosms to simulate in situ biodegradation of trichloroethylene in contaminated aquifers. Environ. Sci. Technol. 31: 2915-2922

    Google Scholar 

  • Keenan JE, Strand SE & Stensel HD (1994) Degradation kinetics of chlorinated solvents by a propane oxidizing enrichment culture. Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, FL, pp. 1-13

    Google Scholar 

  • Keener WK & Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Appl. Environ. Microbiol. 59: 2501-2510

    Google Scholar 

  • Kelly CJ, Bienkowski PR & Sayler PS (2000) Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotech. Bioeng. 69: 256-265

    Google Scholar 

  • Kim Y, Semprini L & Arp DJ (1997) Aerobic cometabolism of chloroform and 1,1,1-trichloroethane by butane-grown microorganisms. Bioremediation Journal 1: 135-148

    Google Scholar 

  • Kim Y (2000) Aerobic cometabolism of chlorinated aliphatic hydrocarbons by a butane-grown mixed culture: Transformation abilities, kinetics, and inhibition. Ph.D. dissertation. Oregon State University

  • Koh S-C, Bowman JP & Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph. Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59: 960-967

    Google Scholar 

  • Landa AS, Sipkema EM, Weijma J, Beenackers AACM, Dolfing J & Janssen DB (1994) Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60: 3368-3374

    Google Scholar 

  • Lanzarone NA & McCarty PL (1990) Column studies on methanotrophic degradation of trichloroethylene and 1,2-dichloroethylene. Groundwater. 28: 910-919

    Google Scholar 

  • Leeson A & Bouwer EJ (1989) Aerobic biotransformation of halogenated aliphatic compounds. Proc. Annual Conf. Amer. Wat. Works Association, Los Angeles, CA, pp. 805-813

    Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL & Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951-956

    Google Scholar 

  • Lontoh S & Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 64: 1106-1114

    Google Scholar 

  • Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin EE & White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60: 542-548

    Google Scholar 

  • Murrel JC (1992) Genetics and molecular biology of methanotrophs FEMS Microbiol. Rev. 88: 223-248

    Google Scholar 

  • Nelson MJ, Montgomery SO, Neill EJO & Pritchard PH (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52: 383-384

    Google Scholar 

  • Nelson MJ, Montgomery SO, Mahaffey WR & Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53: 949-954

    Google Scholar 

  • Nelson MJ, Montgomery SO & Pritchard PH (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 54: 604-606

    Google Scholar 

  • Nelson YM & Jewell WJ (1993) Vinyl chloride biodegradation with methanotrophic attached films. J. Environmental Engineering, ASCE 119: 890-907

    Google Scholar 

  • Newman LM & Wackett LP (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: Products, kinetics, and turnover-dependent inactivation. J. Bacteriology 179: 90-96

    Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB & Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55: 2819-2826

    Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ & Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14

    Google Scholar 

  • Olsen RH, Kukor JJ & Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PK01. J. Bacteriology 176: 3749-3756

    Google Scholar 

  • Phelps TJ, Niedzielski JJ, Schram RM, Herbes SE & White DC (1990) Biodegradation of trichloroethylene in continuousrecycle expanded-bed bioreactors. Appl. Environ. Microbiol. 56: 1702-1709

    Google Scholar 

  • Rasche ME, Hicks RE, Hyman MR & Arp DJ (1990) Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas euopaea. J. Bacteriol. 172: 5368-5373

    Google Scholar 

  • Rasche ME, Hyman MR & Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl. Environ. Microbiol. 57: 2986-2994

    Google Scholar 

  • Saéz PB & Rittmann BE (1991) Biodegradation kinetics of 4-chlorophenol, an inhibitory co-metabolite. Res. J. WPCF 63: 838-847.

    Google Scholar 

  • Saéz PB & Rittmann BE (1993) Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation 4: 3-21

    Google Scholar 

  • Schmidt SK, Simkins S & Alexander M (1985) Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl. Environ. Microbiol. 50: 323-331

    Google Scholar 

  • Segar RL Jr. (1994) Endogenous cometabolism of chlorinated ethenes by biofilms grown on phenol. Ph.D. Dissertation. University of Texas at Austin

  • Segar RL Jr & Speitel GE Jr (1995) Cometabolism of chloroethene mixtures by biofilms grown on phenol. In RE Hinchee, A Leeson & L Semprini (eds) Bioremediation of chlorinated chemicals (pp. 245-253). Battelle Press, Columbus, OH

    Google Scholar 

  • Segar RL Jr, DeWys SL & Speitel GE Jr (1995) Sustained trichloroethylene cometabolism by phenol-degrading bacteria in sequencing biofilm reactors. Water Environment Research 67: 764-774

    Google Scholar 

  • Semprini L & McCarty PL (1992) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 2. Cometabolic transformations. Ground Water 30: 37-44

    Google Scholar 

  • Shields MS, Montgomery SO, Chapmen PJ, Cuskey SM & Pritchard PH (1989) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ. Microbiol. 55: 1624-1629

    Google Scholar 

  • Shurtliff MW, Parkin GF, Weathers LJ & Gibson DT (1996) Biotransformation of trichloroethylene by a phenol-induced mixed culture. J. Environmental Engineering, ASCE 122: 581-589

    Google Scholar 

  • Smith LH, Kitanidis PK & McCarty PL (1997) Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Biotech. Bioeng. 53: 320-331

    Google Scholar 

  • Speitel GE Jr, Segar RL Jr & Leonard JM (1990) Bioreactor technology for the treatment of trace levels of chlorinated solvents. Proc. Petroleum Hydrocarbons and Organic Chemicals Conference. National Water Well Association, Houston, TX, pp. 477-489

    Google Scholar 

  • Speitel GE Jr, Thompson RC & Weissman D (1993) Biodegradation kinetics of Methylosinus trichosporium OB3b at low concentrations of chloroform in the presence and absence of enzyme competition by methane. Water Research 27: 15-24

    Google Scholar 

  • Stensel HD, Richards SC, Treat TP & Strand SE (1992) Water Environ. Fed. 65th Ann. Conference and Exposition, pp. 273-284

  • Stirling DI & Dalton H (1979) The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath). FEMS Microbiol Lett. 5: 315-318

    Google Scholar 

  • Strand SE & Shippert L (1986) Oxidation of chloroform in an aerobic soil exposed to natural gas. Appl. Environ. Microbiol. 52: 203-205

    Google Scholar 

  • Strand SE, Bjelland MD & Stensel HD (1990) Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methaneoxidizing bacteria. Res. J. Water Pollut. Control Fed. 62: 124-129

    Google Scholar 

  • Strand SE, Wodrich JV & Stensel HD (1991) Biodegradation of chlorinated solvents in a sparged methanotrophic biofilm reactor. Res. J. Wat. Pollut. Control Fed. 63: 859-867

    Google Scholar 

  • Suzuki I, Kwok SC & Dular U (1976) Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett. 72: 117-120

    Google Scholar 

  • Tompson AF, Knapp RB, Hanna ML & Taylor RT (1994) Simulation of TCE migration and biodegradation in a porous medium under conditions of finite degradation capacity. Advances in Water Resources 17: 241-249

    Google Scholar 

  • Tovanabootr A, Russel S, Stoffers NH, Arp DJ & Semprini L (1997) An evaluation of five aerobic cometabolic substrates for trichloroethylene treatment by microbes stimulated from the subsurface of McClellan Air Force Base. In situ and on-site bioremediation, Volume 3. Battelle Press, Columbus, OH, pp. 93-100

    Google Scholar 

  • Travis BJ & Rosenberg ND (1997) Modeling in situ bioremedation of TCE at the Savannah River: Effects of product toxicity and microbial interactions on TCE degradation. Environ. Sci. Technol. 31: 3093-3102

    Google Scholar 

  • Tschantz MF, Bowman JP, Donaldson TL, Bienkowski PR, Strong-Gunderson JM, Palumbo AV, Herbes SE & Sayler GS (1995) Methanotrophic TCE biodegradation in a multi-stage bioreactor. Environ. Sci. Technol. 29: 2073-2082

    Google Scholar 

  • Tsien HC, Brusseau GA, Hanson RS & Wackett LP (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55: 3155-3161

    Google Scholar 

  • van Hylckama Vlieg JE, de Koning W & Janssen DB (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and Detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312.

    Google Scholar 

  • van Hylckama Vlieg JE, de Koning W & Janssen DB (1997) Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63: 4961-4964

    Google Scholar 

  • Vannelli T, Logan M, Arciero DM & Hooper AB (1990) Degradation of halogenated aliphatic compounds by the ammonia126 oxidizing bacterium Nitrosomonas europaea. App. Environ. Microbiol. 56: 1169-1171

    Google Scholar 

  • Wackett LP & Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54: 1703-1708

    Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR & Hanson RS (1989) Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55: 2960-2964

    Google Scholar 

  • Wackett LP & Householder SR (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725

    Google Scholar 

  • Wilcox DW, Autenrieth RL & Bonner JS (1995) Propane-induced biodegradation of vapor phase trichloroethylene. Biotechnol. Bioeng. 46: 333-342

    Google Scholar 

  • Wilson BH, Pogue DW & Canter LW (1988) Biological treatment of trichloroethylene and 1,1,1-trichloroethane from contaminated air streams. Proc. Petroleum Hydrocarbons Conference. National Water Well Association/American Petroleum Institute, Houston, TX, pp. 823-831

    Google Scholar 

  • Wilson JT & Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49: 242-243

    Google Scholar 

  • Yang L, Chang YF & Chou MS (1999) Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. J. Hazard. Mater. B69: 111-126

  • Zylstra GJ, Wackett LP & Gibson DT (1989) Trichloroethylene degradation by Escherichia coli. containing the cloned Pseudomonas putida F1 toluene dioxygenase genes. Appl. Environ. Microbiol. 55: 3162-3166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Cohen, L., Speitel, G.E. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12, 105–126 (2001). https://doi.org/10.1023/A:1012075322466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012075322466

Keywords

Navigation