Skip to main content

On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid Cosmologies

Abstract

For general relativistic spacetimes filled with an irrotational perfect fluid a generalized form of Friedmann's equations governing the expansion factor of spatially averaged portions of inhomogeneous cosmologies is derived. The averaging problem for scalar quantities is condensed into the problem of finding an "effective equation of state" including kinematical as well as dynamical "backreaction" terms that measure the departure from a standard FLRW cosmology. Applications of the averaged models are outlined including radiation-dominated and scalar field cosmologies (inflationary and dilaton/string cosmologies). In particular, the averaged equations show that the averaged scalar curvature must generically change in the course of structure formation, that an averaged inhomogeneous radiation cosmos does not follow the evolution of the standard homogeneous-isotropic model, and that an averaged inhomogeneous perfect fluid features kinematical "backreaction" terms that, in some cases, act like a free scalar field source. The free scalar field (dilaton) itself, modelled by a "stiff" fluid, is singled out as a special inhomogeneous case where the averaged equations assume a simple form.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Adler, S., and Buchert, T. (1999). Astron. Astrophy. 343, 317.

    Google Scholar 

  2. 2.

    Arnowitt, R., Deser, S., and Misner, C. W. (1962). In Gravitation: an Introduction to Current Research L. Witten (ed.), New York: Wiley.

    Google Scholar 

  3. 3.

    Bruni, M., Dunsby, P. K. S., and Ellis, G. F. R. (1992a). Astrophys. J. 395, 34.

    Google Scholar 

  4. 4.

    Bruni, M., Ellis, G. F. R., and Dunsby, P. K. S. (1992b). Class. Quant. Grav. 9, 921.

    Google Scholar 

  5. 5.

    Buchert, T. (2000). Gen. Rel. Grav. 32, 105. (Paper I).

    Google Scholar 

  6. 6.

    Buchert, T., and Domínguez, A. (1998). Astron. Astrophys. 335, 395.

    Google Scholar 

  7. 7.

    Buchert, T., Domínguez, A., and Pérez-Mercader, J. (1999). Astron. Astrophys. 349, 343.

    Google Scholar 

  8. 8.

    Buchert, T., and Ehlers, J. (1997). Astron. Astrophys. 320, 1.

    Google Scholar 

  9. 9.

    Buchert, T., and Veneziano, G. (2001). In preparation.

  10. 10.

    Dunsby, P. K. S., Bruni, M., and Ellis, G. F. R. (1992). Astrophys. J. 395, 54.

    Google Scholar 

  11. 11.

    Ehlers, J. (1961). Akad. Wiss. Lit. (Mainz); Abh. Math.-Nat. Kl. No. 11, 793; translation: Gen. Rel. Grav. 25, 1225 (1993).

    Google Scholar 

  12. 12.

    Ehlers, J. (1971). In “General Relativity and Cosmology,” Proc. XLVII Enrico Fermi School, R. K. Sachs (ed.), New York: Academic, pp. 1–67.

    Google Scholar 

  13. 13.

    Ellis, G. F. R. (1971). In “General Relativity and Cosmology,” Proc. XLVII Enrico Fermi School, R. K. Sachs (ed.), New York: Academic, pp. 104–179.

    Google Scholar 

  14. 14.

    Ellis, G. F. R., and Bruni, M. (1989). Phys. Rev. D 40, 1804.

    Google Scholar 

  15. 15.

    Ellis, G. F. R., Bruni, M., and Hwang, J. (1990). Phys. Rev. D 42, 1035.

    Google Scholar 

  16. 16.

    Hwang, J., and Vishniac, E. (1990). Astrophys. J. 353, 1.

    Google Scholar 

  17. 17.

    Israel, W. (1976). Ann. Phys. (NY) 100, 310.

    Google Scholar 

  18. 18.

    Kasai, M. (1995). Phys. Rev. D 52, 5605.

    Google Scholar 

  19. 19.

    King, A. R., and Ellis, G. F. R. (1973). Commun. Math. Phys. 31, 209.

    Google Scholar 

  20. 20.

    MacCallum, M. A. H., and Taub, A. H. (1972). Commun. Math. Phys. 25, 173.

    Google Scholar 

  21. 21.

    Madsen, M. S. (1988). Class. Quant. Grav. 5, 627.

    Google Scholar 

  22. 22.

    Maartens, R., Triginer, J., and Matravers, D. R. (1999). Phys. Rev. D 60, 103503.

    Google Scholar 

  23. 23.

    Stoeger, W. R., Helmi, A., and Torres, D. F. (1999). gr-qc/9904020.

  24. 24.

    Takada, M., and Futamase, T. (1999). Gen. Rel. Grav. 31, 461.

    Google Scholar 

  25. 25.

    Taub, A. H. (1973). Commun. Math. Phys. 29, 79.

    Google Scholar 

  26. 26.

    Yodzis, P. (1974). Proc. Royal Irish Acad. 74A, 61.

    Google Scholar 

  27. 27.

    York, J. W. Jr. (1979). In “Sources of Gravitational Radiation,” L. Smarr (ed.), Cambridge Univ. Press, p. 83.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchert, T. On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid Cosmologies. General Relativity and Gravitation 33, 1381–1405 (2001). https://doi.org/10.1023/A:1012061725841

Download citation

  • Cosmology
  • perfect fluid
  • backreaction