Pharmaceutical Research

, Volume 14, Issue 3, pp 354–357 | Cite as

The AERX™ Aerosol Delivery System

  • Jeff Schuster
  • Reid Rubsamen
  • Peter Lloyd
  • Jack Lloyd
Article

Abstract

Purpose. We describe the AERX aerosol delivery system, a new, bolus inhalation device that is actuated at preprogrammed values of inspiratory flow rate and inhaled volume. We report on its in vitro characterization using a particular set of conditions used in pharmacokinetic and scintigraphic studies.

Methods. Multiple doses of aerosol were delivered from single use collapsible plastic containers containing liquid formulation. The aerosol was generated by forcing the formulation under pressure through an array of 2.5 micron holes. Air was drawn through the device at 70 LPM, and the aerosol was collected onto a filter or Andersen cascade impactor. The emitted dose was quantified from the filter collection data, and the particle size distribution was obtained from the best fit log-normal distribution to the impactor data.

Results. 57.0 ± 5.9% of the dose of drug placed as an aqueous solution in the 45 μL collapsible container was delivered as an aerosol (n = 40). The best fit size distribution had an MMAD = (2.95 ± 0.06) μm and a geometric standard deviation σg = 1.24 ± 0.01 (n = 6).

Conclusions. The AERX aerosol delivery system generates a nearly monodisperse aerosol with the properties required for efficient and repeatable drug delivery to the lung.

drug delivery aerosols inhalational therapy morphine analgesia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. R. Phipps, I. Gonda, S. D. Anderson, D. Bailey, and G. Bautovich. Eur. Respir. J. 7:1474–1482 (1994).Google Scholar
  2. 2.
    W. Stahlhofen, J. Gebhart, and J. Heyder. Am. Ind. Hyg. Assoc. J. 41:385–390 (1980).Google Scholar
  3. 3.
    S. P. Newman, A. Hollingworth, and A. R. Clark. International Journal of Pharmaceutics 102:127–132 (1994).Google Scholar
  4. 4.
    S. J. Farr, A. M. Rowe, R. Rubsamen, and G. Taylor. Thorax 50:639–644 (1995).Google Scholar
  5. 5.
    E. R. Weibel. Morphometry of the Human Lung. Springer-Verlag, Berlin, 1963.Google Scholar
  6. 6.
    G. Taylor. Adv. Drug Deliv. Rev. 5:37–61 (1990).Google Scholar
  7. 7.
    Task Group on Lung Dynamics. Health Phys. 12:173 (1966).Google Scholar
  8. 8.
    W. C. Hinds. Aerosol Technology. Wiley, New York, 1982.Google Scholar
  9. 9.
    N. R. Lindblad and H. M. Schneider. J. Sci. Inst. 42:635 (1965).Google Scholar
  10. 10.
    J. Plateau. Statique Experiemntale et Theorique Liquides soumis aux seules Forces Moleculaires. Gauthier-Villars, Paris, 1873.Google Scholar
  11. 11.
    J. W. S. Raleigh. Proc. London Math. Soc. 10:4–13 (1878).Google Scholar
  12. 12.
    E. Tyler, and F. Watkin. Phil. Mag. 14:849 (1932).Google Scholar
  13. 13.
    N. A. Fuchs. Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, Oxford (1962).Google Scholar
  14. 14.
    G. A. Ferron, W. G. Kreyling, and B. Haider. J. Aerosol Sci. 19:611–631 (1987).Google Scholar
  15. 15.
    S. J. Farr, J. A. Schuster, P. M. Lloyd, L. J. Lloyd, J. K. Okikawa, and R. M. Rubsamen. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery V, Interpharm Press, Inc., Buffalo Grove, 1996, pp. 175–185.Google Scholar
  16. 16.
    The United States Pharmacopeia, Rand McNally, Taunton, 1994.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jeff Schuster
    • 1
  • Reid Rubsamen
    • 1
  • Peter Lloyd
    • 1
  • Jack Lloyd
    • 1
  1. 1.Aradigm CorporationHay word

Personalised recommendations