Skip to main content
Log in

Phyletic relationships within the genus Hordeum using PCR-based markers

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Fifteen Hordeum species and subspeciesbelonging to groups with different genomes were studied usingPCR-based markers to establish phylogenetic relationshipswithin the genus. Two hundred and seventeen RAPD and STS markers wereused to calculate genetic distances and construct phylogenetic trees.The phenetic analysis clearly separated the primary gene pool,represented by H. vulgaressp. vulgare, H.vulgare ssp. vulgare convar. vulgare f. agriochriton andH. vulgare ssp.spontaneum, from the secondary gene pool,represented by H. bulbosumand the tertiary gene pool, represented by American wild barleys andH. bogdanii. Data obtainedfrom PCO analysis are in complete agreement with taxonomicclassifications proposed previously, which were comparisons ofnumerous morphological, cytological and reproductivecharacters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asfaw Z. and von Bothmer R. 1990. Hybridization between land-race varieties of Ethiopian barley (Hordeum vulgare ssp.vulgare) and the progenitor of barley (H. vulgare subsp.spontaneum). Hereditas 112: 57–64.

    Google Scholar 

  • Baum B.R. and Bailey L.G. 1991. Relationships among native and introduced North American species of Hordeum, based on chloroplast DNA restriction-site variation. Can. J. Bot. 69: 2421–2426.

    Google Scholar 

  • Baum B.R. and Johnson D.A. 1988. The 5S rRNA gene in sea barley (Hordeum marinum Hudson sensu lato): sequence vari-ation among repeat units and relationship to the X haplome in barley (Hordeum). Genome 41: 652–661.

    Google Scholar 

  • von Bothmer R. 1992. The wild species of Hordeum: relationships and potential use for improvement of cultivated barley. In: Shewry P.R (ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB Int., Oxford, pp. 3–18.

    Google Scholar 

  • von Bothmer R., Flink J., Jacobsen N., Kotimaki M. and Landstrom T. 1983. Interspecific hybridization with cultivated barley (Hor deum vulgare L.). Hereditas 99: 219–244.

    Google Scholar 

  • von Bothmer R., Flink J. and Landstrom T. 1986a. Meiosis in interspecific Hordeum hybrids. I. Diploid combinations. Can. J. Genet. Cytol. 28: 525–535.

    Google Scholar 

  • Bothmer R., Giles B.R. and Jacobsen N. 1986b. Crosses and genome relationships in the Hordeum patagonicum group. Ge-netica 71: 75–80.

    Google Scholar 

  • von Bothmer R. and Jacobsen N. 1985. Origin, taxonomy and related species. In: Rasmusson D (ed.), Barley Vol. 26. ASA Monograph, pp. 19–56.

  • von Bothmer R., Jacobsen N., Baden C., Jørgensen R.B. and Linde-Laursen I. 1995. An ecogeographical study of the genus Hor-deum. Systematic and ecogeographic studies on crop gene pools 7. International Plant Genetic Resources Institute, Rome, 2nd edition.

  • von Bothmer R., Jacobsen N., Baden C., Linde-Laursen I. and Jørgensen R.B. 1991. An ecogeographical study of the genus Hordeum. Systematic and ecogeographic studies on crop genepools 7. International Board for Plant Genetics Resources, Rome.

  • De Bustos A., Casanova C., Soler C. and Jouve N. 1998. RAPD variation in wild populations of four species of the genus Hordeum (Poaceae). Theor. Appl. Genet. 96: 101–111.

    Google Scholar 

  • De Bustos A., Soler C. and Jouve N. 1999. Analysis by PCR-based markers using designed primers to study relationships between species of Hordeum (Poaceae). Genome 42: 129–138.

    Google Scholar 

  • Delogu G., Terzi V., Cattivelli L. and Stanca A.M. 1993. Le varieta di orzo coltivate in Italia. Edizioni L'Informatore Agrario, Ver-ona.

    Google Scholar 

  • Dewey D.R. 1984. The genome system of classification as a guide to hybridization with the perennial Triticeae. In: Gustafson J.P (ed.), Gene Manipulation in Plant Improvement. Plenum Publ. Corp., New York, pp. 209–279.

    Google Scholar 

  • Doebley J., von Bothmer R. and Larson S. 1992. Chloroplast DNA variation and the phylogeny of Hordeum (Poaceae). Am. J. Bot. 79: 576–584.

    Google Scholar 

  • Faccioli P., Terzi V., Monetti A., Nicola J. and Pecchioni N. 1995. B-hordein STSs markers for barley genotype identification: comparison with RFLPs, hordein A-PAGE and morpho-physio-logical traits. Seed Sci. & Technol. 23: 415–427.

    Google Scholar 

  • Felsenstein J. 1995. PHYLIP (Phylogeny Inference Package) ver-sion 3.57 c. University of Washington, Distributed by the author.

  • Fitch W.M. and Margoliash E. 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Google Scholar 

  • Forde B.G., Heyworth A., Pywell J. and Kreis M. 1985b. Nucleo-tide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res. 13: 7327–7333.

    Google Scholar 

  • Forde B.G., Kreis M., Williamson M.S., Fry R.P., Pywell J., Shewry P.R. et al. 1985a. Short tandem repeats shared by B-and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 4: 9–15.

    Google Scholar 

  • Gonzalez J.M. and Ferrer E. 1993. Random amplified polymorphic DNA analysis in Hordeum species. Genome 36: 1029–1031.

    Google Scholar 

  • Gower J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 55: 582–585.

    Google Scholar 

  • Grossi M., Gulli M., Stanca A.M. and Cattivelli L. 1995. Charac-terization of two barley genes that respond rapidly to dehydration stress.Plant Sci. 105: 71–80.

    Google Scholar 

  • Harlan J. 1976. Barley Hordeum vulgare (Gramineae-Triticinae). In: Simmonds N.W (ed.), Evolution of Crop Plants. Longman, Essex, pp. 93–98.

  • Jaaska V. and Jaaska V. 1986. Isoenzyme variation in the barley genus Hordeum. I. Alcohol dehydrogenase and superoxide dis mutase.Biochem. Physiol. Pflanzen. 181: 301–320.

    Google Scholar 

  • Jørgensen R.B. 1986. Relationships in the barley genus (Hordeum). An electrophoretic examination of proteins. Hereditas104: 273–291.

    Google Scholar 

  • Kasha K. and Sadasivaiah R.S. 1971. Genome relationships be-tween Hordeum vulgare L. and H. bulbosum. Chromosoma. 35: 264–287.

    Google Scholar 

  • Kataoka J., Ogihara Y. and Tsunewaki K. 1987. Chloroplast DNA variation observed among Hordeum species. Barley Genet. 5: 515–524.

    Google Scholar 

  • Komatsuda T., Tanno K.-i., Salomon B., Bryngelsson T. and von Bothmer R. 1999. Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome 42: 973–981.

    Google Scholar 

  • Lange W. 1971. Crosses between Hordeum vulgare and H. bul-bosum. I. Production, morphology and meiosis of hybrids and haploids. Euphytica 20: 14–29.

    Google Scholar 

  • Linde-Laursen I., von Bothmer R. and Jacobsen N. 1992. Relation-ships in the genus Hordeum. Giemsa c-banded karyotypes. Hereditas 116: 111–116.

    Google Scholar 

  • Love A. 1984. Conspectus of the Triticeae. Feddes Repert. 95: 425–521.

    Google Scholar 

  • Marillia E.F. and Scoles G.J. 1996. The use of RAPD markers in Hordeum phylogeny. Genome 39: 646–654.

    Google Scholar 

  • Molnar S.J., Wheateroft R. and Fedak G. 1992. RFLP analysis of Hordeum species relationships. Hereditas 116: 87–91.

    Google Scholar 

  • Murray H.G. and Thompson W.F. 1988. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8: 4321–4325.

    Google Scholar 

  • Nevo E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P.R (ed.), Barley: Genetics, Biochemistry Molecular Biology and Biotechnology. CAB Int., Oxford, pp. 19–44.

    Google Scholar 

  • Nocelli E., Giovannini T., Bioni M. and Alicchio R. 1999. RFLP and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42: 950–959.

    Google Scholar 

  • Pelger S. and von Bothmer R. 1992. Hordein variation in the genus Hordeum as recognized by monoclonal antibodies. Genome 35: 200–207.

    Google Scholar 

  • Rodriguez-Palenzuela P., Pintor-Toro J., Carbonero P. and Garcia-Olmedo F. 1988. Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin a-hordothionin in barley (H. vulgare). Gene 70: 271–281.

    Google Scholar 

  • Svitashev S., Bryngelsson T., Vershinin A., Pedersen C., Sall T. and von Bothmer R. 1994. Phylogenetic analysis of the genus Hor-deum using repetitive DNA sequences. Theor. Appl. Genet. 89: 801–810.

    Google Scholar 

  • Takahashi R. 1955. The origin and evolution of cultivated barley. Advances in Genetics 7: 227–266.

    Google Scholar 

  • Terzi V. 1997. RAPD markers for fingerprinting barley, oat and triticale varieties. J. Genet. Breed. 51: 115–120.

    Google Scholar 

  • Thomas H.M. and Pickering R.A. 1988. The cytogenetics of a triploid Hordeum bulbosum and of some of its hybrids and trisomic derivatives.Theor. Appl. Genet. 76: 93–96.

    Google Scholar 

  • Tragoonrung S., Kanazin V., Hayes P.M. and Blake T.K. 1992. Sequence-tagged-site-facilitated PCR for barley genome map-ping. Theor. Appl. Genet. 84: 1002–1008.

    Google Scholar 

  • Vale G., Torrigiani E., Toubia-Rahme H. and Delogu G. 1995. Molecular cloning of the barley pathogen induced gene coding for 'Thaumatin like' protein. Barley Genetics Newsletter 24: 12–13.

    Google Scholar 

  • Wang R.R.-C., von Bothmer R., Dvorak J., Fedak G., Linde-Laursen I. and Muramatsu M. 1994. Genome symbols in the Triticeae (Poaceae). In: Wang R.R.-C., Jensen K.B. and Jaussi C. (eds), Proceedings of the 2nd International Triticeae Symposium, June 20-24, 1994. Utah State University, Logan, pp.29–34.

    Google Scholar 

  • Weining S. and Langridge P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain re-action. Theor. Appl. Genet. 82: 209–216.

    Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18: 6531–6535.

    Google Scholar 

  • Zhang Q., Saghai-Maroof M.A. and Yang P.G. 1992. Ribosomal DNA polymorphisms and the Oriental-Occidental genetic dif-ferentiation in cultivated barley. Theor. Appl. Genet. 84: 682–687.

    Google Scholar 

  • Zohary D. 1969. The progenitors of wheat and barley in relation to domestication and agriculture dispersal in the old world. In: Ucko P.J. and Dimbleby G.W. (eds), The Domestication and Exploitation of Plants and Animals. Duckworth, London, pp.47–66.

    Google Scholar 

  • Zohary D. and Hopf M. 1988. Domestication of Plants in the Old World. Clarendon, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzi, V., Pecchioni, N., Faccioli, P. et al. Phyletic relationships within the genus Hordeum using PCR-based markers. Genetic Resources and Crop Evolution 48, 447–458 (2001). https://doi.org/10.1023/A:1012031413581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012031413581

Navigation