Skip to main content
Log in

Looking for a Possible Breakdown of Local Lorentz Invariance for Electromagnetic Phenomena: Theory and First Experimental Results

  • Published:
Foundations of Physics Letters

Abstract

We propose a new electromagnetic test of breakdown of local Lorentz invariance. It is based essentially on the detection of a non-zero force between a circular steady current and a charge, both at rest in the Earth frame. A preliminary experimental run gave a positive evidence for such an effect, which appears strongly dependent on the orientation of the circuit. Possible theoretical interpretations are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, e.g., J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965), Sec. 11.1.

    MATH  Google Scholar 

  2. J. D. Bjorken, Ann. Phys. 24, 174 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. I. Blokhintsev, Phys. Lett. 12, 272 (1964); Sov. Phys. Uspekhi 9, 405 (1966).

    Article  ADS  Google Scholar 

  4. L. B. Redei, Phys. Rev. 145, 999 (1966).

    Article  ADS  Google Scholar 

  5. P. R. Phillips, Phys. Rev. 139, B491 (1965). P.R. Phillips and D. Woolum, Nuovo Cim. B 64, 28 (1969).

    Article  ADS  Google Scholar 

  6. E. Recami and R. Mignani, Riv. Nuovo Cim. 4(2) (1974), and references therein.

  7. G. Yu. Bogoslovsky, Nuovo Cim. B 40, 99, 116 (1977). For a review, see G. Yu. Bogoslovsky, Fortschr. Phys. 42, 2 (1994).

    Article  ADS  Google Scholar 

  8. For a review of Finsler's spaces, see, e.g., M. Matsumoto, Foundation of Finsler Geometry and Special Finsler Spaces (Kaiseisha Otsu, 1986).

    MATH  Google Scholar 

  9. R. M. Santilli, Found. Phys. 27, 625 (1997), and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  10. H. B. Nielsen and I. Picek, Phys. Lett. B 114, 141 (1982); Nucl. Phys. B211, 269 (1983).

    Article  Google Scholar 

  11. S. Coleman and S. L. Glashow, Phys. Lett. B 405, 249 (1997). S. L. Glashow, Nucl. Phys. (Proc. Suppl.) B 70, 180 (1998). See also D. Colladay and V. A. Kostelecky, Phys. Rev. D 57, 3932 (1997).

    Article  ADS  Google Scholar 

  12. S. Coleman and S. L. Glashow, “Evading the GZK cosmicray cutoff,” preprinte HUTP-98/A075, Harvard University; hep-ph/9808446 27 Aug. 1998.

  13. See C. M. Will, Theory and Experiment in Gravitational Physics, revised edn. (University Press, Cambridge, 1993), and references therein.

    Book  MATH  Google Scholar 

  14. F. Cardone and R. Mignani, ‘On a nonlocal relativistic kinematics,’ INFN preprint No. 910, Roma, November 1992.

  15. F. Cardone and R. Mignani, Found. Phys. 29, 1735 (1999).

    Article  MathSciNet  Google Scholar 

  16. F. Cardone and R. Mignani, JETP 83, 435 [Zh. Eksp. Teor. Fiz. 110, 793] (1996).

    ADS  Google Scholar 

  17. F. Cardone, R. Mignani, and R. M. Santilli, J. Phys. G 18, L61, L141 (1992).

    Article  ADS  Google Scholar 

  18. F. Cardone, R. Mignani, and V. S. Olkhovski, J. de Phys. I (France) 7, 1211 (1997); Mod. Phys. Lett. B 14, 109 (2000).

    Article  ADS  Google Scholar 

  19. F. Cardone and R. Mignani, Int. J. Mod. Phys. A 14, 3799 (1999).

    Article  ADS  Google Scholar 

  20. F. Cardone, M. Gaspero, and R. Mignani, Eur. Phys. J. C 4, 705 (1998).

    Article  ADS  Google Scholar 

  21. F. Cardone, M. Francaviglia, and R. Mignani, Gen. Rel. Grav. 30, 1619(1998); 31, 1049 (1999); Found. Phys. Lett. 12, 281, 347 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. H. Aronson, G. J. Bock, H-Y. Chang, and E. Fishbach, Phys. Rev. Lett. 48, 1306 (1982); Phys. Rev. D 28, 495 495 (1983). N. Grossman et al., Phys. Rev. Lett. 59, 18 (1987).

    Article  ADS  Google Scholar 

  23. For experimental as well as theoretical reviews on the Bose-Einstein effect in multiboson production, see, e.g., B. Lörstad: Int. J. Mod. Phys. A 4, 2861 (1989); Correlations and Multiparticle Production (CAMP), M. Pluenner, S. Raha, and R. M. Weiner, eds. (World Scientific, Singapore, 1991). D H. Boal, C.K. Gelbke, and B. K. Jennings, Rev. Mod. Phys. 62, 553 (1990), and references quoted therein.

    Article  ADS  Google Scholar 

  24. For reviews on both experimental and theoretical aspects of superluminal photon tunnelling, see, e.g., G. Nimtz and W. Heitmann, Progr. Quantum Electr. 21, 81 (1997); R.Y. Chiao and A. M. Steinberg, “Tunnelling times and superluminality,” in Progress in Optics, E. Wolf, ed., 37, 346 (Elsevier Science, 1997). V. S. Olkhovsky and A. Agresti, in Tunnelling and its Implications, D. Mugnai, A. Ranfagni, and L. S. Schulman, eds. (World Scientific, Singapore, 1997), p.327.

    Article  ADS  Google Scholar 

  25. C. O. Alley, “Relativity and clocks,” in Proceedings of the 33rd Annual Symposium on Frequency Control (Elec. Ind. Ass., Washington, D.C., 1979); “Proper time experiments in gravitational fields with atomic clocks, aircraft, and laser light pulses,” in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), p. 363.

    Google Scholar 

  26. O. D. Jefimenko, Am. J. Phys. 30, 19 (1962); Electricity and Magnetism, 2nd edn. (Electret Science, Star City, 1989).

    Article  ADS  Google Scholar 

  27. M. A. Heald, Amer. J. Phys. 52, 522 (1984).

    Article  ADS  Google Scholar 

  28. A. K. T. Assis, W. A. Rodrigues, Jr., and A. J. Mania, Found. Phys. 29, 729 (1999).

    Article  MathSciNet  Google Scholar 

  29. U. Bartocci and M. Mamone Capria, Amer. J. Phys. 59, 1030 (1991).

    Article  ADS  Google Scholar 

  30. U. Bartocci and M. Mamone Capria, Found. Phys. 21, 787 (1991).

    Article  ADS  Google Scholar 

  31. W. F. Edwards, C. S. Kenyon, and D. K. Lemon, Phys. Rev. D 14, 922 (1976).

    Article  ADS  Google Scholar 

  32. R. Sansbury, Rev. Sci. Instrum. 56, 415 (1985).

    Article  ADS  Google Scholar 

  33. D. K. Lemon, W. F. Edwards, and C. S. Kenyon, Phys. Lett. A 162, 105 (1992).

    Article  ADS  Google Scholar 

  34. S. Maglic and D. F. Bartlett, Rev. Sci. Instrum. 61, 2637 (1990).

    Article  ADS  Google Scholar 

  35. See M. C. Combourieu and J. P. Vigier, Phys. Lett. A 175 (1993), and references therein.

  36. For a theoretical discussion, see, e.g., K. S. Thorne, in 300 Years of Gravitation, S. W. Hawking and W. Israel, eds. (University Press, Cambridge, 1987). Recent experimental upper limits are given in P. Astone et al., Phys. Lett. B 385, 421 (1996).

    Google Scholar 

  37. F. Cardone and R. Mignani, “Possible observation of electromagnetic breakdown of local Lorentz invariance,” submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartocci, U., Cardone, F. & Mignani, R. Looking for a Possible Breakdown of Local Lorentz Invariance for Electromagnetic Phenomena: Theory and First Experimental Results. Found Phys Lett 14, 51–64 (2001). https://doi.org/10.1023/A:1012029312055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012029312055

Navigation