International Journal of Primatology

, Volume 22, Issue 6, pp 1033–1055 | Cite as

Feeding, Diet, and Jaw Form in West African Colobus and Procolobus

Article

Abstract

The functional link between mandibular morphology and masticatory stress has been documented by both experimental and comparative investigation. Somewhat more tenuous is the purported connection between dietary variation and the form of the jaws in primates. Several factors complicate the inference of such a connection, including anecdotal or incomplete dietary data from field studies and allometric effects on skeletal form that may have little to do with diet per se. We compared the jaws of sympatric colobines from West Africa to test the effect of diet on mandibular form. Procolobus badius and Colobus polykomos occupy the same habitat yet differ in diet primarily due to the exploitation of hard seeds by C. polykomos. The fact that the two taxa are comparable in body size also obviates the need for allometric qualifications. Colobus polykomos is expected to possess more robust mandibular corpora than Procolobus badius. In fact, the jaws of Colobus polykomos do not differ consistently from those of Procolobus badius in terms of biomechanical function. This apparent failure of mandibular morphology to reflect differences in diet and feeding behavior may be due to a variety of factors. We suspect that functional demands related to canine tooth support are contributing to obliteration of the expected biomechanical signal. Successful prediction of dietary effects on mandibular form requires consideration of competing structural and functional demands. The influence of diet on mandibular corporeal morphology is not equivalent across different primate species.

Procolobus badius Colobus polykomos mastication stress biomechanics functional morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anapol, F., and Lee, S. (1994). Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94: 239-261.Google Scholar
  2. Bouvier, M. (1986a). A biomechanical analysis of mandibular scaling in Old World Monkeys. Am. J. Phys. Anthrop. 69: 473-482.Google Scholar
  3. Bouvier, M. (1986b). Biomechanical scaling of mandibular dimensions in New World Monkeys. Int. J. Primatol. 7: 551-567.Google Scholar
  4. Bouvier, M., and Hylander, W. L. (1981). Effect of bone strain on cortical bone structure in macaques (Macaca mulatta). J. Morphol. 167: 1-12.Google Scholar
  5. Brown, B. (1997). Miocene hominoid mandibles: Functional and phylogenetic perspectives. In Begun, D. R., Ward, C. V., and Rose, M. D. (eds.), Function, Phylogeny and Fossils: Miocene Hominoid Evolution and Adaptations, Plenum, New York, pp. 153-171.Google Scholar
  6. Cole, T. M. (1992). Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons. J. Hum. Evol. 23: 253-282.Google Scholar
  7. Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus. Am. J. Phys. Anthropol. 80: 91-106.Google Scholar
  8. Daegling, D. J. (1992) Mandibular morphology and diet in the genus Cebus. Int. J. Primatol. 13: 545-570.Google Scholar
  9. Daegling, D. J. (1993). The relationship of in vivo bone strain to mandibular corpus morphology in Macaca fascicularis. J. Hum. Evol. 25: 247-269.Google Scholar
  10. Daegling, D. J., and Hylander, W. L. (1998). Biomechanics of torsion in the human mandible. Am. J. Phys. Anthropol. 105: 73-87.Google Scholar
  11. Daegling, D. J., and Rossie, J. B. (1998). Surface strain gradients in alveolar bone. Am. J. Phys. Anthropol. (Suppl. 26): 73.Google Scholar
  12. Dasilva, G. L. (1989). The ecology of the western black and white colobus (Colobus polykomos polykomos Zimmerman 1780) on a riverine island in South-Eastern Sierra Leone, DPhil Thesis, University of Oxford.Google Scholar
  13. Dasilva, G. L. (1994). Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. Int. J. Primatol. 15: 655-680.Google Scholar
  14. Davies, A. G., Oates, J. F., and Dasilva, G. L. (1999). Patterns of frugivory in three West African colobine monkeys. Int. J. Primatol. 20: 327-357.Google Scholar
  15. Dean, M. C., and Beynon, A. D. (1991). Tooth crown heights, tooth wear, sexual dimorphism and jaw growth in hominoids. Z. Morphol. Anthropol. 78: 425-440.Google Scholar
  16. Demes, B., Preuschoft, H., and Wolff, J. E. A. (1984). Stress-strength relationships in the mandibles of hominoids. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum, New York, pp. 369-390.Google Scholar
  17. DuBrul, E. L. (1977). Early hominid feeding mechanisms. Am. J. Phys. Anthropol. 47: 305-320.Google Scholar
  18. Fleagle, J. G., and McGraw, W. S. (1999). Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proc. Natl. Acad. Sci. 96: 1157-1161.Google Scholar
  19. Gingerich, P. D., Smith, B. H., and Rosenburg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am. J. Phys. Anthropol. 58: 81-100.Google Scholar
  20. Grine, F. E. (1986). Dental evidence for dietary differences in Australopithecus and Paranthropus: A quantitative analysis of permanent molar microwear. J. Human Evol. 15: 783-822.Google Scholar
  21. Hayes, V. J., Freedman, L., and Oxnard, C. E. (1996). Dental sexual dimorphism and morphology in African colobus monkeys as related to diet. Int. J. Primatol. 17: 725-757.Google Scholar
  22. Hiiemae, K. (1984). Functional aspects of primate jaw morphology. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum, New York, pp. 257-281.Google Scholar
  23. Hull, D. B. (1979). A craniometric study of the black and white Colobus Illiger 1811 (Primates: Cercopithecidae). Am. J. Phys. Anthropol. 51: 163-182.Google Scholar
  24. Hylander, W. L. (1979a). The functional significance of primate mandibular form. J. Morphol. 160: 223-240.Google Scholar
  25. Hylander, W. L. (1979b). Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis in the mandible. J. Morphol. 159: 253-296.Google Scholar
  26. Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. Am. J. Phys. Anthrop. 64: 1-46.Google Scholar
  27. Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling. Amer. Zool. 25: 315-330.Google Scholar
  28. Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of "robust" australopithecine jaws. In Grine, F. E. (ed.), Evolutionary History of the Robust Australopithecines, Aldine de Gruyter, New York, pp. 55-83.Google Scholar
  29. Hylander, W. L., Johnson, K. R., and Crompton A. W. (1992). Muscle force recruitment and biomechanical modeling: An analysis of masseter muscle function during mastication in Macaca fascicularis. Am. J. Phys. Anthropol. 88: 365-387.Google Scholar
  30. Hylander, W. L., and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am. J. Phys. Anthropol. 94: 523-547.Google Scholar
  31. Hylander, W. L., Ravosa, M. J., Ross, C. F., and Johnson, K. R. (1998). Mandibular corpus strain in primates: Further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. Am. J. Phys. Anthropol. 107: 257-271.Google Scholar
  32. Hylander, W. L., Ravosa, M. J., Ross, C. F., Wall, C. E., and Johnson, K. R. (2000). Symphyseal fusion and jaw-adductor muscle force: An EMG study. Am. J. Phys. Anthropol. 112: 469-492.Google Scholar
  33. Jablonski, N. G., Pan, R. L., and Chaplin, G. (1998). Mandibular morphology of the doucs and snub-nosed monkeys in relation to diet. In Jablonski, N. G. (ed.), The Natural History of the Doucs and Snub-Nosed Monkeys, World Scientific, Singapore, pp. 105-128.Google Scholar
  34. Janis, C. M. (1984). Prediction of primate diets from molar wear patterns. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum, New York, pp. 331-340.Google Scholar
  35. Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In Butler, P. M., and Joysey, K. A. (eds.), Development, Function and Evolution of Teeth, Academic Press, New York: pp. 309-339.Google Scholar
  36. Kay, R. F. (1981). The nut-crackers-A new theory of the adaptations of the Ramapithecinae. Am. J. Phys. Anthropol. 55: 141-151.Google Scholar
  37. Kiltie, R. A. (1982). Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 14: 188-195.Google Scholar
  38. Kinzey, W. G. (1974). Ceboid models for the evolution of hominoid dentition. J. Human Evol. 3: 191-203.Google Scholar
  39. Kinzey, W. G. (1978). Feeding behaviour and molar features in two species of titi monkeys. In Chivers, D. J., and Herbert, J. (eds.), Recent Advances in Primatology: Vol. I. Behaviour, Academic Press, London, pp. 373-385.Google Scholar
  40. Lauder, G. V. (1995). On the inference of function from structure. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology, Cambridge University Press, Cambridge, pp. 1-18.Google Scholar
  41. Leutenegger, W. (1971). Metric variability of the postcanine dentition in colobus monkeys. Am. J. Phys. Anthropol. 35: 91-100.Google Scholar
  42. Lucas, P. W., and Luke, D. A. (1984). Chewing it over: Basic principles of food breakdown. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum, New York, pp. 283-301.Google Scholar
  43. Lucas, P. W., and Teaford, M. F. (1994). Functional morphology of colobine teeth. In Davies, A. G., and Oates, J. F. (eds.), Colobine Monkeys: Their Ecology, Behavior and Evolution, Cambridge University Press, Cambridge, pp. 173-203.Google Scholar
  44. McKey, D. B., Gartlan, J. S., Waterman, P. G., and Choo, G. M. (1981). Food selectivity by black colobus monkeys (Colobus satanas) in relation to food chemistry. Biol. J. Linn. Soc. 16: 115-146.Google Scholar
  45. Oates, J. F. (1994). The natural history of African colobines. In Davies, A. G., and Oates, J. F. (eds.), Colobine Monkeys: Their Ecology, Behavior and Evolution, Cambridge University Press, Cambridge, pp. 75-128.Google Scholar
  46. Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G. L., and Mole S. (1990). Determinants of variation in tropical forest primate biomass: New evidence from West Africa. Ecology 71: 328-343.Google Scholar
  47. Pan R., Peng Y., Ye Z., Wang H., Yu F. (1995). Comparison of masticatory morphology between Rhinopithecus bieti and R. roxellana. Am. J. Primatol. 17: 401-427.Google Scholar
  48. Plavcan, J. M., van Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 87: 461-477.Google Scholar
  49. Ravosa, M. J. (1990). Functional assessment of subfamily variation in maxillomandibular morphology among Old World monkeys. Am. J. Phys. Anthropol. 82: 199-212.Google Scholar
  50. Ravosa, M. J. (1991). Structural allometry of the prosimian mandibular corpus and symphysis. J. Human Evol. 20: 3-20.Google Scholar
  51. Ravosa, M. J. (1996). Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17: 909-932.Google Scholar
  52. Ravosa, M. J. (2000). Size and scaling in the mandible of living and extinct apes. Folia Primatol. 71: 305-322.Google Scholar
  53. Schaff, M. (1995). Differences in anti-predation strategies, food choice and social structure between sympatric Colobus polykomos and C. badius: Testing a model, Master's thesis, University of Utrecht.Google Scholar
  54. Smith, R. J. (1983). The mandibular corpus of female primates: Taxonomic, dietary, and allometric correlates of interspecific variations in size and shape. Am. J. Phys. Anthropol. 61: 315-330.Google Scholar
  55. Smith, R. J. (1984). Comparative functional morphology of maximum mandibular opening (gape) in primates. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum, New York, pp. 231-255.Google Scholar
  56. Smith, R. J. (1993). Categories of allometry: Body size versus biomechanics. J. Human Evol. 24: 173-182.Google Scholar
  57. Sokal, R. R., and Rohlf, F. J. (1995). Biometry, 3rd edn., W. H. Freeman, New York.Google Scholar
  58. Spencer, M. A. (1999). Constraints on masticatory system evolution in anthropoid primates. Am. J. Phys. Anthropol. 108: 483-506.Google Scholar
  59. Swindler, D. R. (1976). The Dentition of Living Primates. New York, Academic Press.Google Scholar
  60. Takahashi, L. K., and Pan, R. (1994). Mandibular morphometrics among macaques: The case of Macaca thibetana. Int. J. Primatol. 15: 597-621.Google Scholar
  61. Vinyard, C. J., and Ravosa, M. J. (1998). Ontogeny, function and scaling of the mandibular symphysis in Papionin primates. J. Morphol. 235: 157-175.Google Scholar
  62. Wachter, B., Schabel, M., and Noe, R. (1997). Diet overlap and polyspecific associations of red colobus and diana monkeys in the Tai National Park, Ivory Coast. Ethology 103: 514-526.Google Scholar
  63. Weijs, W. J., and de Jongh, H. J. (1977). Strain in mandibular alveolar bone during mastication in the rabbit. Archs. Oral Biol. 22: 667-675.Google Scholar
  64. Wilkinson, L. (1990). SYSTAT: The System for Statistics, Systat Inc, Evanston, IL.Google Scholar
  65. Wood, B. A. (1978). Allometry and hominid studies. In Bishop, W. W. (ed.), Geological Background to Fossil Man, Scottish Academic Press, Edinburgh, pp. 125-128.Google Scholar
  66. Yamada, H., and Sakai, T. (1983). Tooth size and its sexual dimorphism in colobus monkeys. J. Anthrop. Soc. Nippon 91: 79-98.Google Scholar
  67. Yamashita, N. (1998). Functional dental correlates of food properties in five Malagasy lemur species. Am. J. Phys. Anthropol. 106: 169-88.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of FloridaGainesville
  2. 2.Department of AnthropologyThe Ohio State UniversityMansfield

Personalised recommendations