Skip to main content
Log in

Proliferation Indices as Molecular Pharmacodynamic Endpoints in Evaluation of Anticancer Drug Effect in Human Solid Tumors

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The present study compared proliferative indices, i.e. incorporation of DNA precursor (i.e. thymidine or TdR, and bromodeoxyuridine or BrdU) and expression of proliferating cell nuclear antigen (PCNA), as molecular pharmacodynamic endpoints in evaluation of anticancer drug effect in human solid tumors.

Methods. Tumor specimens obtained from patients were grown as histocultures. After treatment with doxorubicin, mitomycin C, and/or paclitaxel, cells labeled by [3H]TdR were identified using autoradiography, and cells labeled by BrdU and PCNA were identified using immunohistochemical techniques. Drug effect was measured as reduction of DNA precursor-labeled cells or PCNA-expressing cells.

Results. The results indicate that (a) the two DNA precursors, TdR and BrdU, labeled the same cells and resulted in identical pharmacodynamics, (b) the pharmacodynamics established using inhibition of DNA precursor incorporation were qualitatively and quantitatively different from the pharmacodynamics established using inhibition of PCNA expression, (c) the inhibition of PCNA expression was erratic in some tumors, and (d) the differences in pharmacodynamics established using the two end points are drug-specific, with greater differences for paclitaxel than for mitomycin C.

Conclusions. The erratic results measured by the PCNA labeling method suggest that this method may be less reliable than the conventional DNA precursor labeling method. The finding of identical pharmacodynamics of doxorubicin and paclitaxel established using BrdU and [3H]TdR indicates that the two precursors are interchangeable. Because the methodology for detecting BrdU incorporation requires less time and does not require the use of radioactivity, we conclude that inhibition of BrdU incorporation represents a useful endpoint for evaluating the antiproliferative activity of anticancer drugs in human solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. R. Eldridge, L. F. Tilbury, T. L. Goldsworthy, and B. E. Butterworth. Measurement of chemically induced cell proliferation in rodent liver and kidney: a comparison of 5-bromo-2′-deoxyuridine and [3H]thymidine administered by injection or osmotic pump. Carcinogenesis 11:2245-2251 (1990).

    PubMed  Google Scholar 

  2. M. Giordano, M. Danova, G. Mazzini, P. Gobbi, and A. Riccardi. Cell kinetics with in vivo bromodeoxyuridine assay, proliferating cell nuclear antigen expression, and flow cytometric analysis. Prognostic significance in acute nonlymphoblastic leukemia. Cancer 71:2739-2745 (1993).

    PubMed  Google Scholar 

  3. A. R. Soames, D. Lavender, J. R. Foster, S. M. Williams, E. B. Wheeldon. Image analysis of bromodeoxyuridine (BrdU) staining for measurement of S-phase in rat and mouse liver. J. Histochem. Cytochem. 42:939-944 (1994).

    PubMed  Google Scholar 

  4. Y. Yonemura, T. Kamata, S. Ohoyama, H. Matumoto, H. Kimura, T. Kosaka, A. Yamaguchi, K. Miwa, and I. Miyazaki. Relation of proliferative activity to survival in patients with advanced gastric cancer. Anal. Cell Path. 3:103-110 (1991).

    Google Scholar 

  5. N. Yousuf, G. A. Yanik, B. A. George, M. Masterson, C. M. Mazewski, L. M. White, M. A. Miller, B. C. Lampkin, and A. Raza. Comparison of two double labeling techniques to measure cell cycle kinetics in myeloid leukemias. Anticancer Res. 11:1195-1199 (1991).

    PubMed  Google Scholar 

  6. P. Lin and D. C. Allison. Measurement of DNA content and of tritiated thymidine and bromodeoxyuridine incorporation by the same cells. J. Histochem. Cytochem. 41:1435-1439 (1993).

    PubMed  Google Scholar 

  7. J. G. Thornton, M. Wells and W. J. Hume. Flash labelling of S-phase cells in short-term organ culture of normal and pathological human endometrium using bromodeoxyuridine and tritiated thymidine. J. Pathol. 154:321-328 (1988).

    PubMed  Google Scholar 

  8. Y. Gan, M. G. Wientjes, D. E. Schuller and J. L.-S. Au. Pharmacodynamics of taxol in human head and neck tumors. Cancer Res. 56:2086-2093 (1996).

    PubMed  Google Scholar 

  9. T. D. Schmittgen, M. G. Wientjes, R. A. Badalament, and J. L.-S. Au. Pharmacodynamics of mitomycin C in cultured human bladder tumors. Cancer Res. 51:3849-3856 (1991).

    PubMed  Google Scholar 

  10. J. L.-S. Au, M. G. Wientjes, T. J. Rosol, A. Koolemans-Beynen, E. A. Goebel and, D. E. Schuller. Histocultures of patient head and neck tumors for pharmacodynamics studies. Pharm. Res. 10:1493-1499 (1993).

    PubMed  Google Scholar 

  11. K. T. Robbins, K. M. Connors, A. M. Storniolo, C. Hanchett, and R. M. Hoffman. Sponge-gel-supported histoculture drug-response assay for head and neck cancer. Correlations with clinical response to cisplatin. Arch. Otolaryngol. Head Neck Surg. 120:288-292 (1994).

    PubMed  Google Scholar 

  12. T. Kubota, N. Sasano, O. Abe, I. Nakao, E. Kawamura, T. Saito, M. Endo, K. Kimura, H. Demura, H. Sasano, H. Nagura, N. Ogawa, R. M. Hoffman, and the Chemosensitivity Study Group for the Histoculture Drug-Response Assay: Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin. Cancer Res. 1:1537-1543 (1995).

    PubMed  Google Scholar 

  13. T. Furukawa, T. Kubota, and R. M. Hoffman. Clinical applications of the histoculture drug response assay. Clin. Cancer Res. 1:305-311 (1995).

    PubMed  Google Scholar 

  14. N. Weidner, D. H. Moore, B. M. Ljung, F. M. Waldman, W. H. Goodson, B. Mayall, K. Chew, and H. S. Smith. Correlation of bromodeoxyuridine (BRDU) labeling of breast carcinoma cells with mitotic figure content and tumor grade. Am. J. Surg. Path. 17:987-994 (1993).

    PubMed  Google Scholar 

  15. C. M. Quinn and N. A. Wright. The clinical assessment of proliferation and growth in human tumours: evaluation of methods and applications as prognostic variables. J. Pathol. 160:93-102 (1990).

    PubMed  Google Scholar 

  16. P. A. Hall and A. L. Woods. Immunohistochemical markers of cellular proliferation: achievements, problems and prospects. Cell Tissue Kinet. 23:505-522 (1990).

    PubMed  Google Scholar 

  17. A. Pich, E. Margaria, and L. Chiusa. Proliferative activity is a significant prognostic factor in male breast carcinoma. Am. J. Pathol. 145:481-489 (1994).

    PubMed  Google Scholar 

  18. J. E. Celis and A. Celis. Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc. Natl. Acad. Sci. USA 82:3262-3266 (1985).

    PubMed  Google Scholar 

  19. S. Aaltomaa, P. Lipponen, and K. Syrjanen. Prognostic value of cell proliferation in breast cancer as determined by proliferating cell nuclear antigen (PCNA) immunostaining. Anticancer Res. 12:1281-1286 (1992).

    PubMed  Google Scholar 

  20. S. Jain, M. I. Filipe, P. A. Hall, N. Waseem, D. P. Lane, and D. A. Levison. Prognostic value of proliferating cell nuclear antigen in gastric carcinoma. J. Clin. Pathol. 44:655-659 (1991).

    PubMed  Google Scholar 

  21. R. Bravo and H. Macdonald-Bravo. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol. 105:1549-1554 (1987).

    PubMed  Google Scholar 

  22. S. M. Kang, W. H. Kim, C. W. Kim, and Y. I. Kim. Comparison of bromodeoxyuridine and proliferating cell nuclear antigen labeling in gastric carcinoma. J. Korean Med. Sci. 9:16-20 (1994).

    PubMed  Google Scholar 

  23. P. Galand and C. Degraef. Cyclin/PCNA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissues. Cell Tissue Kinet. 22:383-392 (1989).

    PubMed  Google Scholar 

  24. T. J. Sebo, P. C. Roche, T. E. Witzig, and P. J. Kurtin. Proliferative activity in non-Hodgkin's lymphomas. A comparison of the bromodeoxyuridine labeling index with PCNA immunostaining and quantitative image analysis. Am. J. Clin. Pathol. 99:668-672 (1993).

    PubMed  Google Scholar 

  25. M. D. Coltrera and A. M. Gown. PCNA/cyclin expression and BrdU uptake define different subpopulations in different cell lines. J. Histochem. Cytochem. 39:23-30 (1991).

    PubMed  Google Scholar 

  26. T. D. Schmittgen, J. R. Weaver, R. A. Badalament, M. G. Wientjes, E. A. Klein, D. C. Young, and J. L.-S. Au. Correlation of human bladder tumor histoculture proliferation and sensitivity to mitomycin C with tumor pathobiology. J. Urol. 152:1632-1636 (1994).

    PubMed  Google Scholar 

  27. P. A. Hall, D. A. Levison, A. L. Woods, C. C. Yu, D. B. Kellock, J. A. Watkins, D. M. Barnes, C. E. Gillett, R. Camplejohn, R. Dover, N. R. Waseem, and D. P. Lane. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J. Pathol. 162:285-294 (1990).

    PubMed  Google Scholar 

  28. R. Bravo, R. Frank, P. A. Blundell, and H. Macdonald-Bravo. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326:515-517 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, J.R., Gan, Y. & Au, J.LS. Proliferation Indices as Molecular Pharmacodynamic Endpoints in Evaluation of Anticancer Drug Effect in Human Solid Tumors. Pharm Res 15, 1546–1551 (1998). https://doi.org/10.1023/A:1011998932047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011998932047

Navigation