Skip to main content

Cratering Records in the Inner Solar System in Relation to the Lunar Reference System

Abstract

The well investigated size-frequency distributions (SFD) for lunar craters is used to estimate the SFD for projectiles which formed craters on terrestrial planets and on asteroids. The result shows the relative stability of these distributions during the past 4 Gyr. The derived projectile size-frequency distribution is found to be very close to the size-frequency distribution of Main-Belt asteroids as compared with the recent Spacewatch asteroid data and astronomical observations (Palomar-Leiden survey, IRAS data) as well as data from close-up imagery by space missions. It means that asteroids (or, more generally, collisionally evolved bodies) are the main component of the impactor family. Lunar crater chronology models of the authors published elsewhere are reviewed and refined by making use of refinements in the interpretation of radiometric ages and the improved lunar SFD. In this way, a unified cratering chronology model is established which can be used as a safe basis for modeling the impact chronology of other terrestrial planets, especially Mars.

This is a preview of subscription content, access via your institution.

References

  1. Arvidson, R., et al.:1978, 'Standard Techniques for Presentation and Analysis of Crater Sizefrequency Data', Icarus 37, 467-474.

    Google Scholar 

  2. Asphaug, E., Moore, J.M., Morrison, D., Benz, W., Nolan, M.C., and Sullivan, R.J.:1996, 'Mechanical and Geological Effects of Impact Cratering on Ida', Icarus 120, 158-184.

    Google Scholar 

  3. Baldwin, R.B.:1971, 'On the History of Lunar Impact Cratering: The Absolute Time Scale and the Origin of Planetesimals', Icarus 14, 36-52.

    Google Scholar 

  4. Belton, M.J.S. et al.:1992, 'Galileo Encounter with 951 Gaspra-First Pictures of an Asteroid', Science 257, 1647-1652.

    Google Scholar 

  5. Belton, M.J.S. et al.:1994, 'First Images of Asteroid 243 Ida', Science 265, 1543.

    Google Scholar 

  6. Brown, H.:1960, 'The Density and Mass Distribution of Meteoritic Bodies in the Neighborhood of the Earth's Orbit', J. Geophys. Res. 65, 1679-1683.

    Google Scholar 

  7. Campo Bagatin, A., Cellino A., Davis, D.R., Farinella, P., and Paolicchi, P.:1994a, 'Wavy Size Distribution for Collisional Systems with a Small-size Cutoff', Planet. Space Sci. 42, 1049-1092.

    Google Scholar 

  8. Campo Bagatin, A., Farinella, P., and Petit, J.-M.:1994b, 'Fragment Ejection Velocities and the Collisional Evolution of Asteroids', Planet. Space Sci. 42, 1099-1107.

    Google Scholar 

  9. Cellino, A., Zappalà, V., and Farinella, P.:1991, 'The Asteroid Size Distribution from IRAS Data', Mon. Not. R. Astr. Soc. 253, 561-574.

    Google Scholar 

  10. Chapman, C., et al.:1996a, 'Cratering on Ida', Icarus 120, 77-86.

    Google Scholar 

  11. Chapman, C.R., Veverka. J., Belton, M., Neukum, G. and Morrison, D.:1996b, 'Cratering on Gaspra', Icarus 120, 231-245.

    Google Scholar 

  12. Croft, S.K.:1985, 'The Scaling of Complex Craters', J. Geophys. Res. 90, 828-842.

    Google Scholar 

  13. Davis, D.R., Chapman, C.R., Weidenschilling, S.J., and Greenberg, R.:1985, 'Collisional History of Asteroids:Evidence from Vesta and the Hirayama Families', Icarus 62, 30-35.

    Google Scholar 

  14. Davis, D., Weidenshilling, S.J., Farinella, P., Paolicchi, P. and Binzel, R.P.:1989, 'Asteroid Collisional History:Ef fects on Sizes and Spins', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 805-826.

    Google Scholar 

  15. Davis, D.R., Ryan, E.V., and Farinella, P.:1994, 'Asteroid Collisional Evolution: Results from Current Scaling Algorithm', Planet. Space. Sci. 43, 599-610.

    Google Scholar 

  16. Dohnanyi, J.W.:1969, 'Collisional Model of Asteroids and their Debris', J. Geophys. Res. 74, 2531-2554.

    Google Scholar 

  17. Durda, D., Greenberg, R., and Jedicke, R.:1998, 'Collisional Models and Scaling Laws:A new Interpretation of the Shape of the Main-belt Asteroid Distribution', Icarus 135, 431-440.

    Google Scholar 

  18. Gaudin, A.:1944, Principles of Mineral Dressing, McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  19. Gil-Hutton, R., and Brunini, A.:1999, 'Collisional Evolution of the Early Asteroid Belt', Planet. Space Sci. 47, 331-338.

    Google Scholar 

  20. Gradie, J.C., Chapman, C.R., and Tedesco, E.W.:1989, 'Distribution of Taxonomic Classes and the Compositional Structure of the Asteroid Belt', in R. Binzel et al. (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 316-335.

    Google Scholar 

  21. Grieve, R.A.F., and Shoemaker E.M.:1994, 'The Record of the Past Impacts on Earth', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 417-462.

    Google Scholar 

  22. Hartmann, W.K.:1964, 'On the Distribution of Lunar Crater Diameters', Comm. Lunar Planet. Lab. 2, 197-203.

    Google Scholar 

  23. Hartmann, W.K.:1965, 'Terrestrial and Lunar Flux of Meteorites in the Last two Billion Years', Icarus 4, 157-165.

    Google Scholar 

  24. Hartmann, W.K.:1966, 'Martian Cratering', Icarus 5, 565-576.

    Google Scholar 

  25. Hartmann, W.K.:1969, 'Terrestrial, Lunar, and Interplanetary Rock Fragmentation', Icarus 10, 201.

    Google Scholar 

  26. Hartmann, W.K.:1970, 'Lunar Cratering Chronology', Icarus 13, 299-301.

    Google Scholar 

  27. Hartmann, W.K.:1971, 'Martian Cratering 3:Theory of Crater Obliteration', Icarus, 15, 410-428.

    Google Scholar 

  28. Hartmann, W.K.:1977, 'Relative Crater Production Rates on Planets', Icarus 31, 260-276.

    Google Scholar 

  29. Hartmann, W.K.:1984, 'Does Crater “Saturation Equilibrium” Occur in the Solar System?', Icarus 60, 56-74.

    Google Scholar 

  30. Hartmann, W.K.:1995, 'Planetary Cratering I: Lunar Highlands and Tests of Hypotheses on Crater Populations', Meteoritics 30, 451-467.

    Google Scholar 

  31. Hartmann, W.K.:1999, 'Martian Cratering VI: Crater Count Isochrons and Evidence for Recent Volcanism from Mars Global Surveyor', Met. Planet. Sci. 34, 167-177.

    Google Scholar 

  32. Hartmann, W.K., and Neukum, G.:2001, 'Cratering Chronology and the Evolution of Mars', Space Sci. Rev., this volume.

  33. Hartmann, W.K., et al.:1981, 'Chronology of Planetary Volcanism by Comparative Studies of Planetary Craters', Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, Elmsford, NY, pp. 1050-1127.

    Google Scholar 

  34. Hartmann, W.K., Berman, D., Esquerdo, G.A., and McEwen, A.:1999a, 'Recent Martian Volcanism: New Evidence from Mars Global Surveyor' Proc. 30th Lunar Planet. Sci. Conf., abstract #1270 (CD-ROM).

  35. Hartmann, W.K., Malin, M.M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P. and Veverka, J.:1999b, 'Evidence for Recent Volcanism on Mars from Crater Counts', Nature 397, 586-589.

    Google Scholar 

  36. Hartmann, W.K., Ryder, G., Dones, L., and Grinspoon, D:2001, 'The Time-dependent Intense Bombardment of the Primordial Earth/moon System', in R. Canup and K. Righter (eds.), Origin of the Earth and Moon, Univ. Arizona Press, in press.

  37. Hawkins, G.S.:1960, 'Asteroid Fragments', Astronom. J. 65, 318-322.

    Google Scholar 

  38. Hughes, D.W.:2000, 'A new Approach to the Calculation of the Cratering Rate of the Earth over the Last 125 ±20 Myr', Mon. Not. Roy. Astron. Soc. 317, 429-437.

    Google Scholar 

  39. Ivanov, B.A.:2001, 'Mars/Moon Cratering Rate Ratio Estimates, Space Sci. Rev., this volume.

  40. Ivanov, B.A., Basilevsky, A.T., and Neukum, G.:1997, 'Atmospheric Entry of Large Meteoroids: Implication to Titan', Planet. Space Sci. 45, 993-1007.

    Google Scholar 

  41. Ivanov, B.A., Neukum, G., and Wagner, R.:1999, 'Impact Craters, NEA, and Main Belt Asteroids: Size-frequency Distribution', Proc. 30th Lunar Planet. Sci. Conf., abstract # 1583 (CD-ROM).

  42. Ivanov, B.A., Neukum, G., and Wagner, R.:2000, 'Size-Frequency Distributions of Planetary Impact Craters and Asteroids', in H. Rickman, and M. Marov (eds.), Collisional Processes in the Solar System, ASSL, Kluwer Academic Publishers, Dordrecht, in press.

    Google Scholar 

  43. Jedicke, R., and Metcalfe, T.S.:1998, 'The Orbital Absolute Magnitude Distributions of Main Belt Asteroids', Icarus 131, 245-260.

    Google Scholar 

  44. König, B.:1977, 'Investigations of Primary and Secondary Impact Structure on the Moon and Laboratory Experiments to Study the Ejecta of Secondary Particles', Ph.D. Thesis, Ruprecht Karl Univ., Heidelberg, 88 pp.

    Google Scholar 

  45. König, B., Neukum, G., and Fechtig, H.:1977, 'Recent Lunar Cratering: Absolute Ages of Kepler, Aristarchus, Tycho', Proc. 8th Lunar Planet. Sci. Conf., 555-557 (abstract).

  46. Love, S., and Ahrens, T.J.:1996, 'Catastrophic Impacts on Gravity Dominated Asteroids', Icarus 124, 141-155.

    Google Scholar 

  47. McEwen, A.S., Gaddis, L.R., Neukum, G., Hoffman, H., Pieters, C.M., and Head, J.W.:1993, 'Galileo Observations of Post-Imbrium Lunar Craters During the First Earth-Moon Flyby', J. Geophys. Res. 98, 17,207-17,231.

    Google Scholar 

  48. McEwen, A.S., Moore, J.M., and Shoemaker, E.M.:1997, 'The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon', J. Geophys. Res. 102, 9231-9242.

    Google Scholar 

  49. Melosh, H.J., and Ryan, E.V.:1997, 'Note:Asteroids Shattered but not Dispersed', Icarus 129, 562-564.

    Google Scholar 

  50. Milani, A., Carpino, M., Hahn, G., and Nobili, A.M.:1989, 'Dynamics of Planet-crossing Asteroids: Classes of Orbital Behavior', Icarus 78, 212-269.

    Google Scholar 

  51. Moore, J.M., and McEwen, A.S.:1996, 'The Abundance of Large, Copernican-age Craters on the Moon', Proc. 27th Lunar Planet. Sci., 899-900.

  52. Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub, A.P., Popova, O.P., Shuvalov, V.V., Spalding, R.E., Jacobs, C., and Tagliaferri, E.:1997, 'Assessement of Kinetic Energy of Meteoroids Detected by Satellite-based Light Sensors', Icarus 130, 259-274.

    Google Scholar 

  53. Neukum, G.:1977, 'Different Ages of Lunar Light Plains', The Moon 17, 383-393.

    Google Scholar 

  54. Neukum, G.:1983, Meteoritenbombardement and Datierung Planetarer Oberflächen, Habilitation Dissertation for Faculty Membership, Univ. of Munich, 186 pp.

  55. Neukum, G., and Hiller, K.:1981, 'Martian Ages', J. Geophys. Res. 86, 3097-3121.

    Google Scholar 

  56. Neukum, G., and Ivanov, B.A.:1994, 'Crater Size Distribution and Impact Probabilities on Earth from Lunar, Terrestrial-planet, and Asteroid Cratering Data', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 359-416.

    Google Scholar 

  57. Neukum, G., König, B., and Arkani-Hamed, J.:1975, 'A Study of Lunar Impact Crater Size Distributions', The Moon 12, 201-229.

    Google Scholar 

  58. Öpik, E.J.:1966, 'The Martian Surface', Science 153, 255.

    Google Scholar 

  59. Rabinowitz, D.L.:1993, 'The Size-distribution of the Earth-approaching Asteroids', Astrophys. J. 407, 412-427.

    Google Scholar 

  60. Rabinowitz, D.L.:1997, 'Are Main-belt Asteroids a Sufficient Source for the Earth-approaching Asteroids? Part II. Predicted vs. Observed Size Distribution', Icarus 130, 287-295.

    Google Scholar 

  61. Rabinowitz, D.L., Bowell, E., Shoemaker, E. and Muinonen, K.:1994, 'The population of Earthcrossing asteroids', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 285-312.

    Google Scholar 

  62. Rabinowitz, D.L., Helin, E., Lawrence, K., and Pravdo, S.:2000, 'A Reduced Estimate of the Number of Kilometer-sized Near-Earth Asteroids', Nature 403, 165-156

    Google Scholar 

  63. Ronca, L.B., Basilevsky, A.T., Kryuchkov, V.P., and Ivanov, B.A.:1981, 'Lunar Craters Evolution and Meteoroidal Flux in Pre-mare and Post-mare Times', The Moon and the Planets 245, 209-229.

    Google Scholar 

  64. Ruzmaikina, T.V., Safronov, V.S., and Weidenschilling, S.J.:1989, 'Radial Mixing of Material in the Asteroidal Zone', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, PP. 681-700.

    Google Scholar 

  65. Safronov, V.S.:1972, 'Ejection of Bodies from the Solar System in the Course of the Accumulation of the Giant Planets and the Formation of the Cometary Cloud', in G.A., Chebotarev, E.I. Kazimirchak-Polonskaia, and B.G. Marsden (eds.), The Motion, Evolution of Orbits, and Origin of Comets, Proc. IAU Symp. 45, Leningrad, Reidel, Dordrecht, p. 329.

    Google Scholar 

  66. Schmidt, R.M., and Housen, K.R.:1987, 'Some Recent Advances in the Scaling of Impact and Explosion Cratering', Int. J. Impact Engng. 5, 543-560.

    Google Scholar 

  67. Shoemaker, E.M.:1977, 'Astronomically Observable Crater-forming Projectiles', in D.J. Roddy, R.O. Pepin, and R.B. Merrill (eds.), Impact and Explosion Cratering, Pergamon Press, New York, pp. 639-656.

  68. Shoemaker, E.M., and Wolfe, R.:1982, 'Cratering Time Scales for the Galilean Satellites, in D. Morrison (ed.), Satellites of Jupiter, Univ. of Arizona Press, Tucson, pp. 277-339.

    Google Scholar 

  69. Shoemaker, E.M., Batson, R.M., Bean, A.L. et al.:1970, 'Preliminary Geologic Investigation of the Apollo 12 Landing Site, Part A', Geology of the Apollo 12 Landing Site, Apollo 12 Prel. Sci. Rep., NASA SP-235.

  70. Stern, S.A., and Weissman, P.R.:2000, 'Collisional Processing of Proto-comets in the Primordial Solar Nebula', Proc. 31st Lunar Planet. Sci. Conf., 1830.

  71. Stöffler, D., and Ryder, G.:2001, 'Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System', Space Sci. Rev., this volume.

  72. Strom, R.:1977, 'Origin and Relative Age of Lunar and Mercurian Inter-crater Plains', Phys. Earth Planet. Interiors 15, 156-172.

    Google Scholar 

  73. Strom, R.G., and Neukum, G.:1988, 'The Cratering Record on Mercury and the Origin of Impacting Objects', in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 336-373.

    Google Scholar 

  74. Strom, R.G., Woronow, A., and Gurnis, M.:1981, 'Crater Populations on Ganymede and Callisto', J. Geophys. Res. 86, 8659-8674

    Google Scholar 

  75. van Houten, C.J., van Houten-Groeneveld, I., Herget, P. and Gehrels, T.:1970, 'The Palomar-Leiden Survey of Faint Minor Planets', Astron. Astrophys. Suppl. 2, 339-448.

    Google Scholar 

  76. Veverka, J. et al.:1997, 'NEAR's Flyby of 253 Mathilde: Images of a C Asteroid', Science 278, 2109-2114.

    Google Scholar 

  77. Veverka, J., et al.:2000, 'NEAR at Eros: Imaging and Spectral Results', Science 289, 2088-2097.

    Google Scholar 

  78. Weidenschilling, S.J.:1994, 'Origin of Cometary Nuclei as “Rubble Piles”', Nature, 368, 721-723.

    Google Scholar 

  79. Weissman, P.R.:1999, 'Diversity of Comets: Formation Zones and Dynamical Paths', Space Sci. Rev. 90, 301-311.

    Google Scholar 

  80. Werner, S.C., Harris, A.W., Neukum, G., Ivanov, B.A., and Harris, A.W.:2000a, 'A Comparison of Lunar Crater Size Frequency Distribution and Near-Earth Asteroid Population Characteristics: Strong Evidence for the Stability of their Size Frequency Distribution', AAS Div. Planet. Sci. Meeting 32, p. 1409.

    Google Scholar 

  81. Werner, S.C., Harris, A.W., Neukum, G., and Ivanov, B.A.:2000b, 'The Near-Earth Asteroid Size Frequency Distribution:A Snapshot of the Lunar Crater Size Frequency Distribution, Icarus, submitted.

  82. Wilhelms, D.E., McCauley, J.F., and Trask, N.J.:1987, 'The Geologic History of the Moon', U.S. Geol. Survey Prof. Paper 1348, Washington, U.S.G.P.O., and Denver, CO, U.S. Geol. Survey, 302 pp.

  83. Wetherill, G.W.:1989, 'Origin of the Asteroid Belt', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 661-680.

    Google Scholar 

  84. Young, J.:1940, 'A Statistical Investigation of Diameter and Distribution of Lunar Craters', J. Brit. Astron. Assoc. 50, 309-326.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neukum, G., Ivanov, B. & Hartmann, W. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Science Reviews 96, 55–86 (2001). https://doi.org/10.1023/A:1011989004263

Download citation

Keywords

  • Solar System
  • Reference System
  • Relative Stability
  • Space Mission
  • Terrestrial Planet