Skip to main content
Log in

A New Microphotolysis Based Approach for Mapping the Mobility of Drugs in Microscopic Drug Delivery Devices

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. M. Sanders and R. W. Hendren. Protein Delivery: Physical Systems, Plenum Press, New York, 1997.

    Google Scholar 

  2. R. H. Müller. Colloid Carriers for Controlled Drug Delivery and Targeting, CRC Press, Boca Raton, 1991.

    Google Scholar 

  3. A. R. Rajabi-Siahboomi, R. W. Bowtell, P. Mansfield, M. C. Davies, and C. D. Melia. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydratation, J. Contr. Rel. 31:121–128 (1994).

    Google Scholar 

  4. P. Colombo, R. Bettini, G. Massimo, P. L. Catellani, P. Santi, and N. A. Peppas. Drug diffusion front movement is important in drug release control from swellable matric tablets, J. Pharm. Sci. 84:991–997 (1995).

    Google Scholar 

  5. I. S. Moussa, and L. H. Cartilier. Characterization of moving fronts in cross-linked amylose matrices by image analysis, J. Contr. Rel. 42:47–55 (1996).

    Google Scholar 

  6. R. Wilding, C. D. Melia, and K. A. Khan. Changes in drug distribution and internal structure of oral pellet systems during in vitro dissolution: cryogenic scanning electron microscopy and X-ray microanalysis, Pharm. Technol. Int. 3:324–329 (1991).

    Google Scholar 

  7. am-Ende, M. T. and N. A. Peppas. Analysis of drug distribution in hydrogels using Fourier transform infrared microscopy, Pharm. Res. 12:2030–2035 (1995).

    Google Scholar 

  8. L. Pereswetoff-Morath, and P. Edman. Dextran microspheres as a potential nasal drug delivery system for insulin—in vitro and in vivo properties, Int. J. Pharm. 124:37–44 (1995).

    Google Scholar 

  9. L. S. Cutts, S. Hibberd, J. Adler, M. C. Davies, and C. D. Melia. Characterizing drug release processes within controlled release dosage forms using the confocal laser scanning microscope, J. Contr. Rel. 42:115–124 (1996).

    Google Scholar 

  10. P. Wedekind, U. Kubitscheck, and R. Peters. Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging, J. Microsc. 176:23–33 (1994).

    Google Scholar 

  11. W. N. E. van Dijk-Wolthuis and J. J. Kettenes-van den Bosch, A. van der Kerk-van Hoof, and W. E. Hennink. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification, Macromolecules 11:3411–3413 (1997).

    Google Scholar 

  12. R. J. H. Stenekes, O. Franssen, E. M. G. van Bommel, D. J. A. Crommelin, and W. E. Hennink. The preparation of dextran microspheres in an all-aqueous system: effect of the formulation parameters on particle characteristics, Pharm. Res. 15:557–561 (1998).

    Google Scholar 

  13. R. Peters and M. Scholz. Fluorescence photobleaching techniques. In R. J. Cherry (ed), New Techniques of Optical Microscopy and Microspectroscopy, Macmillan, New York, 1991, pp 199–228.

    Google Scholar 

  14. P. Wedekind, U. Kubitscheck, O. Heinrich, and R. Peters. Line scanning microphotolysis for diffraction-limited measurements of lateral diffusion, Biophys. J. 71:1621–1632 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Smedt, S.C., Meyvis, T.K.L., Van Oostveldt, P. et al. A New Microphotolysis Based Approach for Mapping the Mobility of Drugs in Microscopic Drug Delivery Devices. Pharm Res 16, 1639–1642 (1999). https://doi.org/10.1023/A:1011988109989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011988109989

Navigation