Abstract
Let L, M and N be p-dimensional subspaces in \(\mathbb{R}\) n. Let {ψ j } be the angles between L and M, let {ψ j } be the angles between M and N, and let {θ j } be the angles between L and M. Consider the orbit of the vector ψ = (ψ1,...., ψ n ) ∈ \(\mathbb{R}\) p with respect to permutations of coordinates and inversions of axes. Let Z be the convex hull of this orbit. Then θ ∈ ϕ + Z. We discuss similar theorems for other symmetric spaces. We also obtain formula for geodesic distance for arbitrary invariant convex Finsler metrics on classical symmetric spaces.
This is a preview of subscription content,
to check access.References
Arazy, J.: More on convergence in unitary matrix spaces, Proc. Amer. Math. Soc. 83 (1982), 44–48.
Bhatia, R.: Matrix Analysis, Springer, New York, 1997.
Berestovskii, V., Plaut, C. and Stallman, C.: Geometric groups, Trans. Amer. Math. Soc. 351 (1999), 1403–1422.
Doley, A. H., Repka, J. and Wildberger, N. J.: Sums of adjoint orbits, Linear and Multilinear Algebra 36(2) (1993), 79–101.
Flensted-Jensen, M. and Koornwinder, T.: The convolution structure for Jacoby functions expansion, Ark. Math. 11 (1973), 245–262.
Klingen, H.: Uber die analytischen Abbildungen verallgemeinerter Einheitskreise auf sich, Math. Ann. 132 (1956), 134–144.
Klyachko, A. A.: Stable bundles, representation theory and hermitian operators, Preprint, Mittag-Leffler Institute, 1997.
Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6 (1973), 413–455.
Lidskii, V. B.: On the eigenvalues of a sum and product of two Hermitian matrices, Dokl. Akad. Nauk SSSR 75 (1950), 769–772.
Lidskii, V. B.: Inequalities for eigenvalues and singular values, addendum to F. R. Gantmakher, Theory of Matrices, second (1966), third (1976), fourth (1988) Russian editions.
Lidskii, B. V.: Spectral polyhedron of a sum of two Hermitian matrices, Funct. Anal. Appl. 10 (1982), 76–77.
Neretin, Yu. A.: Extensions of representations of classical groups to representations of categories, Algebra i Analiz 3(1) (1991), 176–202 (Russian); English translation St Petersburg Math. J. 3 (1991), 147–170.
Neretin, Yu. A.: Integral operators with Gaussian kernels and symmetries of canonical commutation relations, In: Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2 Amer. Math. Soc., Providence, 1996, pp. 97–135.
Neretin, Yu. A.: Categories of Symmetries and Infinite Dimensional Groups, Clarendon Press, Oxford, 1996.
Neretin, Yu. A.: Krein-Shmullian maps and conformal geometry of symmetric spaces, Sb. Math. 190(2) (1999), 255–283.
Nudelman, A. A. and Shvartsman, P. A.: The spectrum of a product of unitary matrices, Uspekhi Mat. Nauk 13 (1958), 111–117.
Rouviere, F.: Espaces symmetriques et méthode de Kashiwara-Vergne, Ann. Sci. Ecole Norm. Sup. 19 (1986), 553–581.
Szabo, Z. I.: Positive definite Berwald spaces, Tensor (NS) 35 (1981), 25–39.
Zelevinsky, A.: Littlewood-Richardson semigroups, In: New Perspectives in Algebraic Combinatorics, Cambridge Univ. Press, 1999, pp. 347–345.
Fulton, W.: Eigenvalues of Hermitian matrices and Littlewood-Richardson coefficients, Preprint, 2000.
Knutson, A. and Tao, T.: The honeycomb model of GLn (ℂ) tensor products, J. Amer. Math. Soc. 12 (1999), 1055–1090.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Neretin, Y.A. On Jordan Angles and the Triangle Inequality in Grassmann Manifolds. Geometriae Dedicata 86, 81–91 (2001). https://doi.org/10.1023/A:1011974705094
Issue Date:
DOI: https://doi.org/10.1023/A:1011974705094