Skip to main content
Log in

Effects of Regulatory Peptides on Electrophysiological Properties of the Human Heart

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

During transesophageal electrical stimulation of the left atria in patients with heart diseases, an intravenous administration of Sandostatin prolonged the cardiac cycle and the effective refractory period of the atrioventricular junction, slowed down the sinoatrial conduction and the sinus node recovery time, and shifted the Wenckebach's point downwards. Neurotensin produced effects opposite to those of Sandostatin. During the Valsalva maneuver, Sandostatin strengthened bradycardia and broadened the range of heart rate changes associated with the vagal tone variations. The latter effect was also observed after the administration of neurotensin. Met-enkephalin and dalargin shortened the cardiac cycle, increased the corrected time of sinus node recovery time, but did not affect the cardiac rhythm dynamics during the Valsalva maneuver. These findings suggest that the regulatory peptides can be involved in control mechanisms determining the electrophysiological parameters of the human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Osadchii, O.E. and Pokrovskii, V.M., Peptidergic Mechanisms in the Cardiac Rhythm Parasympathetic Regulation, Usp. Fiziol. Nauk, 1993, vol. 24, no. 3, p. 71.

    Google Scholar 

  2. Campbell, G., Gibbins, I.L., Morris, J.L., et al., Somatostatin Is Contained in and Released from Cholinergic Nerves in the Heart of the Toad Bufo marinus, Neuroscience, 1982, vol. 7, no. 9, p. 2013.

    Google Scholar 

  3. Barron, B.A., Oakford, L.X., Gaugl, J.F., and Caffrey, J.L., Methionine-Enkephalin-Arg-Phe Immunoreactivity in Heart Tissue, Peptides, 1995, vol. 16, no. 7, p. 1221.

    Google Scholar 

  4. Crick, S.J., Wharton, J., Sheppard, M.N., et al., Innervation of the Human Cardiac Conduction System: A Quantitative Immunohistochemical Study, Circulation, 1994, vol. 89, no. 4, p. 1697.

    Google Scholar 

  5. Lishmanov, Yu.B. and Maslov, L.N., Opioidnye neiropeptidy, stress i adaptatsionnaya zashchita serdtsa (Opioid Neuropeptides, Stress, and Adaptive Heart Protection), Tomsk, Tomsk Gos. Univ., 1994.

    Google Scholar 

  6. Lin, C.I., Wei, J., Cheng, K.K., and Ho, L.T., Electropharmacological Effects of Sandostatin in Human Atrial Fibers, Int. J. Cardiol., 1991, vol. 31, no. 3, p. 313.

    Google Scholar 

  7. Webb, S.C., Krikler, D.M., Hendry, W.G., et al., Electrophysiological Actions of Somatostatin on the Atrioventricular Junction in Sinus Rhythm and Reentry Tachycardia, Brit. Heart J., 1986, vol. 56, no. 3, p. 236.

    Google Scholar 

  8. Narula, O.S., Shantha, N., Vasquez, M., et al., A New Method for Measurement of Sinoatrial Conduction Time, Circulation, 1978, vol. 58, no. 4, p. 706.

    Google Scholar 

  9. Little, W.C., Barr, W.K., and Crawford, M.H., Altered Effect of the Valsalva Maneuver on Left Ventricular Volume in Patients with Cardiomyopathy, Circulation, 1985, vol. 71, no. 2, p. 227.

    Google Scholar 

  10. Montsevichyute-Eringene, E.V., Simplified Mathematico-Statistical Methods in Medical Research, Patol. Fiziol. Eksp. Ter., 1964, no. 4, p. 71.

  11. Osadchii, O.E., Pokrovskii, V.M., Matsko, M.A., and Cherednik, I.L., Cardiotropic Effects of Somatostatin and Its Antagonist, Byul. Eksp. Biol. Med., 1997, vol. 69, no. 9, p. 263.

    Google Scholar 

  12. Wiley, J.W., Uccioli, L., Owyang, C., and Yamada, T., Somatostatin Stimulates Acetylcholine Release in the Canine Heart, Amer. J. Physiol., 1989, vol. 257, no. 2, part 2, H483.

    Google Scholar 

  13. Lundberg, J.M., Rokaeus, A., Hokfelt, T., et al., Neurotensin-like Immunoreactivity in the Preganglionic Sympathetic Nerves and in the Adrenal Medulla of the Cat, Acta Physiol. Scand., 1982, vol. 114, p. 153.

    Google Scholar 

  14. Bachoo, M. and Polosa, C., Cardioacceleration Produced by Close Intra-Arterial Injection of Neurotensin into the Stellate Ganglion of the Cat, Can. J. Physiol. Pharmacol., 1988, vol. 66, no. 4, p. 408.

    Google Scholar 

  15. Osadchii, O.E., Pokrovskii, V.M., Kompaniets, O.G., and Kurzanov, A.N., Comparative Evaluation of Cardiotropic Effects of Neurotensin and Adrenaline in Cats, Fiziol. Zh., 1996, vol. 82, no. 1, p. 104.

    Google Scholar 

  16. Levy, M.N. and Martin, P.J., Neural Regulation of the Heart Beat, Ann. Rev. Physiol., 1981, vol. 43, p. 443.

    Google Scholar 

  17. Rozanski, G.J., Lipsius, S.L., and Randall, W.C., Functional Characteristics of Sinoatrial and Subsidiary Pacemaker Activity in the Canine Right Atrium, Circulation, 1983, vol. 67, no. 6, p. 1378.

    Google Scholar 

  18. Gulyaev, V.P., Masenko, V.P., Yurenev, A.P., and Titov, V.N., Blood Plasma beta-Endorphin Concentration in the Silent Myocardial Ischemia during Holter's ECG Monitoring, Kardiologiya, 1992, vol. 32, no. 3, p. 11.

    Google Scholar 

  19. Konishi, S., Tsunoo, A., and Otsuka, M., Enkephalins Presynaptically Inhibit Cholinergic Transmission in Sympathetic Ganglia, Nature, 1979, vol. 282, p. 515.

    Google Scholar 

  20. Fuder, H., Buder, M., Riers, H.-D., and Rothacher, G., On the Opioid Receptor Subtype Inhibiting the Evoked Release of 3H-Noradrenaline from Guinea-Pig Atria in vivo, Naunyn-Schmiedeberg's Arch. Pharmacol., 1986, vol. 332, p. 148.

    Google Scholar 

  21. Xiao, R.-P., Pepe, S., Spurgeon, H., et al., Opioid Peptide Receptor Stimulation Reverses beta-Adrenergic Effects in Rat Heart Cells, Amer. J. Physiol., 1997, vol. 272, no. 2, part 2, H797.

    Google Scholar 

  22. Weitzel, R., Illes, P., and Starke, K., Inhibition via Opioid Mu-and Delta-Receptors of Vagal Transmission in Rabbit Isolated Heart, Naunyn-Schmiedeberg's Arch. Pharmacol., 1984, vol. 328, no. 2, p. 186.

    Google Scholar 

  23. Pokrovskii, V.M., Osadchii, O.E., Cherednik, I.L., et al., Met-Enkephalin Involvement in Determining the Vagal Functional Effects upon the Cardiac Rhythm, Dokl. Akad. Nauk, 1993, vol. 328, no. 2, p. 267.

    Google Scholar 

  24. Alboni, P., Malcarne, C., Pedroni, P., et al., Electrophysiology of Normal Sinus Node with and without Autonomic Blockade, Circulation, 1982, vol. 65, no. 6, p. 1236.

    Google Scholar 

  25. Schwartz, P.J., Billman, G.E., and Stone, L.H., Autonomic Mechanisms in Ventricular Fibrillation Induced by Myocardial Ischemia during Exercise in Dogs with Healed Myocardial Infarction, Circulation, 1983, vol. 69, no. 4, p. 790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osadchii, O.E., Kanorskii, S.G., Pokrovskii, V.M. et al. Effects of Regulatory Peptides on Electrophysiological Properties of the Human Heart. Human Physiology 27, 601–605 (2001). https://doi.org/10.1023/A:1011972629867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011972629867

Keywords

Navigation