Pharmaceutical Research

, Volume 15, Issue 2, pp 209–215 | Cite as

pH-Metric logP 10. Determination of Liposomal Membrane-Water Partition Coefficients of lonizable Drugs

  • A. Avdeef
  • K. J. Box
  • J. E. A. Comer
  • C. Hibbert
  • K. Y. Tam


Purpose. To investigate a novel approach for the determination of liposomal membrane-water partition coefficients and lipophilicity profiles of ionizable drugs.

Methods. The measurements were performed by using a pH-metric technique in a system consisting of dioleylphosphatidylcholine (DOPC) unilamellar vesicles in 0.15 M KC1 at 25°C. The DOPC unilamellar vesicle suspension was prepared via an extrusion process.

Results. The liposomal membrane-water partition coefficients of eight ionizable drugs: ibuprofen, diclofenac, 5-phenylvaleric acid, warfarin, propranolol, lidocaine, tetracaine and procaine were determined and the values for neutral and ionized species were found to be in the ranges of approximately 4.5 to 2.4 and 2.6 to 0.8 logarithmic units, respectively.

Conclusions. It has been shown that the liposomal membrane-water partition coefficients as derived from the pH-metric technique are consistent with those obtained from alternative methods such as ultrafiltration and dialysis. It was found that in liposome system, partitioning of the ionized species is significant and is influenced by electrostatic interaction with the membranes. We have demonstrated that the pH-metric technique is an efficient and accurate way to determine the liposomal membrane-water partition coefficients of ionizable substances.

partition coefficient liposome ionizable drug drug-lipid membrane interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Hacksell. Structural and Physícochemical Factors in Drug Action. In P. Krogsgaard-Larsen, T. Liljefors and U. Madsen (eds.), A Text Book of Drug Design and Development, Harwood Academic Publisher, Amsterdam, 1996, pp. 35–59.Google Scholar
  2. 2.
    J. J. Kaufman, N. M. Semo, and W. S. Koski. J. Med. Chem. 18:647–655 (1975).Google Scholar
  3. 3.
    A. Leo, C. Hansch, and D. Elkins. Chem. Rev. 71:525–616 (1971).Google Scholar
  4. 4.
    J. K. Seydel and K. J. Schaper. In M. Rowland and G. T. Tucker (eds.), Pharmacokinetics: Theory and Methodology; Pergamon Press, Oxford, 1986; pp. 331–366.Google Scholar
  5. 5.
    U. Hellwich and R. Schubert. Biochem. Pharmacol. 49:511–517 (1995).Google Scholar
  6. 6.
    J. Miyazaki, K. Hideg, and D. Marsh. Biochim. Biophys. Acta 1103:62–68 (1992).Google Scholar
  7. 7.
    R. P. Austin, A. M. Davis, and C. N. Manners. J. Pharm. Sci. 84:1180–1183 (1995).Google Scholar
  8. 8.
    G. Schwarz. Biophys. Chem. 58:67–73 (1996).Google Scholar
  9. 9.
    M. Foradada and J. Estelrich. Int. J. Pharm. 124:261–269 (1995).Google Scholar
  10. 10.
    M. R. Wenk, A. Fahr, R. Reszka, and J. Seelig. J. Pharm. Sci. 85:228–231 (1996).Google Scholar
  11. 11.
    J. A. Rogers and Y. W. Choi. Pharm. Res. 10:913–917 (1993).Google Scholar
  12. 12.
    S. Ong, H. Liu, X. Qiu, G. Bhat, and C. Pidgeon. Anal. Chem. 67:755–762 (1995).Google Scholar
  13. 13.
    C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, A. H. Dantzig, J. Munroe, J. Hornback, J. S. Kasher, L. Glunz, and T. Szczerba. J. Med. Chem. 38:590–594 (1995).Google Scholar
  14. 14.
    J. Formelova, A. Breier, P. Gemeiner, and L. Kurillova. Coll. Czech. Chem. Comm. 56:712–717 (1991).Google Scholar
  15. 15.
    W. N. Kuhnvelten. Eur. J. Biochem. 197:381–390 (1991).Google Scholar
  16. 16.
    G. M. Pauletti and H. Wunderli-Allenspach. Eur. J. Pharm. Sci. 1:273–282 (1994).Google Scholar
  17. 17.
    A. Avdeef. Quant. Struct.—Act. Relat. 11:510–517 (1992).Google Scholar
  18. 18.
    A. Avdeef. J. Pharm. Sci. 82:183–190 (1993).Google Scholar
  19. 19.
    A. Avdeef, J. E. A. Comer and S. J. Thomson. Anal. Chem. 65:42–49 (1993).Google Scholar
  20. 20.
    B. Slater, A. McCormack, A. Avdeef, and J. E. A. Comer. J. Pharm. Sci. 83:1280–1283 (1994).Google Scholar
  21. 21.
    K. Takács-Novák, A. Avdeef, and K. J. Box. J. Pharm. Biomed. Anal. 12:1369–1377 (1994).Google Scholar
  22. 22.
    A. Avdeef, K. J. Box, and K. Takács-Nováks. J. Pharm. Sci. 84:523–529 (1995).Google Scholar
  23. 23.
    A. Avdeef, D. A. Barrett, P. N. Shaw, R. D. Knaggs, and S. S. Davis. J. Med. Chem. 39:4377–4381 (1996).Google Scholar
  24. 24.
    A. Avdeef. Assessment of distribution-pH profiles. In V. Pliska, B. Testa and H. van de Waterbeemd (eds.), Lipophilicity in Drug Action and Toxicology, VCH, Weinhem, 1996, pp. 109–137.Google Scholar
  25. 25.
    K. Takács-Novák and A. Avdeef. J. Pharm. Biomed. Anal. 14:1405–1413 (1996).Google Scholar
  26. 26.
    M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis. Biochim. Biophys. Acta 812:55–65 (1985).Google Scholar
  27. 27.
    L.D. Mayer, M. J. Hope, and P. R. Cullis. Biochim. Biophys. Acta 858:161–168 (1986).Google Scholar
  28. 28.
    A. Avdeef and J. J. Bucher. Anal. Chem. 50:2137–2142 (1987).Google Scholar
  29. 29.
    C. Ottiger and H. Wunderli-Allenspach. Partition behaviour of acids and bases in a phosphatidylcholine liposome/buffer equilibrium dialysis system. Eur. J. Pharm. Sci. (in press).Google Scholar
  30. 30.
    Y. Boulanger, S. Schreier, L. C. Leitch, and I. C. P. Smith. Can. J. Biochem. 58:986–995 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. Avdeef
    • 1
  • K. J. Box
    • 2
  • J. E. A. Comer
    • 2
  • C. Hibbert
    • 2
  • K. Y. Tam
    • 2
  1. 1.pION Inc.Cambridge
  2. 2.Sirius Analytical Instruments Ltd.East SussexEngland

Personalised recommendations